首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The induction of long-term potentiation (LTP) and long-term depression (LTD) at excitatory synapses in the hippocampus can be strongly modulated by patterns of synaptic stimulation that otherwise have no direct effect on synaptic strength. Likewise, patterns of synaptic stimulation that induce LTP or LTD not only modify synaptic strength but can also induce lasting changes that regulate how synapses will respond to subsequent trains of stimulation. Collectively known as metaplasticity, these activity-dependent processes that regulate LTP and LTD induction allow the recent history of synaptic activity to influence the induction of activity-dependent changes in synaptic strength and may thus have an important role in information storage during memory formation. To explore the cellular and molecular mechanisms underlying metaplasticity, we investigated the role of metaplasticity in the induction of LTP by υ-frequency (5-Hz) synaptic stimulation in the hippocampal CA1 region. Our results show that brief trains of υ-frequency stimulation not only induce LTP but also activate a process that inhibits the induction of additional LTP at potentiated synapses. Unlike other forms of metaplasticity, the inhibition of LTP induction at potentiated synapses does not appear to arise from activity-dependent changes in NMDA receptor function, does not require nitric oxide signaling, and is strongly modulated by β-adrenergic receptor activation. Together with previous findings, our results indicate that mechanistically distinct forms of metaplasticity regulate LTP induction and suggest that one way modulatory transmitters may act to regulate synaptic plasticity is by modulating metaplasticity.  相似文献   

2.
Previous in vitro studies have characterized the electrophysiological properties and molecular events associated with long-term potentiation (LTP), but as yet there are no in vivo data from molecular-level dissection that directly identify LTP as the biological substrate for learning and memory. Understanding whether the molecular pathways required for learning are also those generating LTP when measured directly on the relevant circuit of a learning animal is clearly important, although so far has proved technically difficult. Here, for the first time, we combine highly defined genetic mouse models with behavior and in vivo recordings. We recorded the activity-dependent changes taking place at the CA3-CA1 synapses during the acquisition and extinction of a simple form of an associative learning task in mice carrying point mutations on specific docking sites of TrkB receptors (trkB(SHC), trkB(PLC)). The learning task consisted of a classical eyeblink conditioning using a trace paradigm. The conditioned stimulus (CS) consisted of a tone and was followed by a periorbital electrical shock as an unconditioned stimulus (US). The US started 500 msec after the end of the CS. We show that a single pulse presented to the Schaffer collateral-commissural pathway during the CS-US interval evoked a monosynaptic field excitatory postsynaptic potential (fEPSP) at the CA1 pyramidal cells, with a slope linearly related to learning evolution in controls and trkB(SHC) mutants, but the relationship was impaired in trkB(PLC) mice. These data support a link between the PLCgamma-docking site downstream of TrkB and the activity-dependent synaptic changes evoked at the CA3-CA1 synapses during associative learning in conscious mice, and indicate that TrkB PLCgamma-site-activated molecular pathway(s) underlie both associative learning and LTP triggered at the CA3-CA1 synapse.  相似文献   

3.
Integrins comprise a large family of heterodimeric, transmembrane cell adhesion receptors that mediate diverse neuronal functions in the developing and adult CNS. Recent pharmacological and genetic studies have suggested that beta1-integrins are critical in synaptic plasticity and memory formation. To further define the role of integrins in these processes, we generated a postnatal forebrain and excitatory neuron-specific knockout of alpha3-integrin, one of several binding partners for beta1 subunit. At hippocampal Schaffer collateral-CA1 synapses, deletion of alpha3-integrin resulted in impaired long-term potentiation (LTP). Basal synaptic transmission and paired-pulse facilitation were normal in the absence of alpha3-integrin. Behavioral studies demonstrated that the mutant mice were selectively defective in a hippocampus-dependent, nonmatch-to-place working memory task, but were normal in other hippocampus-dependent spatial tasks. The impairment in LTP and working memory is similar to that observed in beta1-integrin conditional knockout mice, suggesting that alpha3-integrin is the functional binding partner for beta1 for these processes in the forebrain.  相似文献   

4.
5.
Through protein interactions mediated by their cytoplasmic C termini the GluN2A and GluN2B subunits of NMDA receptors (NMDARs) have a key role in the formation of NMDAR signaling complexes at excitatory synapses. Although these signaling complexes are thought to have a crucial role in NMDAR-dependent forms of synaptic plasticity such as long-term potentiation (LTP), the role of the C terminus of GluN2A in coupling NMDARs to LTP enhancing and/or suppressing signaling pathways is unclear. To address this issue we examined the induction of LTP in the hippocampal CA1 region in mice lacking the C terminus of endogenous GluN2A subunits (GluN2AΔC/ΔC). Our results show that truncation of GluN2A subunits produces robust, but highly frequency-dependent, deficits in LTP and a reduction in basal levels of extracellular signal regulated kinase 2 (ERK2) activation and phosphorylation of AMPA receptor GluA1 subunits at a protein kinase A site (serine 845). Consistent with the notion that these signaling deficits contribute to the deficits in LTP in GluN2AΔC/ΔC mice, activating ERK2 and increasing GluA1 S845 phosphorylation through activation of β-adrenergic receptors rescued the induction of LTP in these mutants. Together, our results indicate that the capacity of excitatory synapses to undergo plasticity in response to different patterns of activity is dependent on the coupling of specific signaling pathways to the intracellular domains of the NMDARs and that abnormal plasticity resulting from mutations in NMDARs can be reduced by activation of key neuromodulatory transmitter receptors that engage converging signaling pathways.  相似文献   

6.
Memory shows age-related decline. According to the current prevailing theoretical model, encoding of memories relies on modifications in the strength of the synapses connecting the different cells within a neuronal network. The selective increases in synaptic weight are thought to be biologically implemented by long-term potentiation (LTP). Here, we report that tetanic stimulation of afferent fibers in slices from 12-mo-old mice triggers an LTP not restricted to the activated synapses. This phenomenon, which can be anticipated to hinder memory encoding, is suppressed by blocking either L-type Ca(++) channels or Ca(++)-induced Ca(++) release, both well known to become disregulated with aging.  相似文献   

7.
Dopamine has been demonstrated to be involved in the modulation of long-term potentiation (LTP) in the CA1 region of the hippocampus. As monoamine transporter blockade will increase the actions of endogenous monoamine neurotransmitters, the effect of a dopamine transporter (DAT) antagonist on LTP was assessed using field excitatory postsynaptic potentials recorded in the CA1 region of the rat hippocampal slice preparation. Application of the DAT-specific blocker GBR 12,935 produced a significant enhancement in LTP of Schaffer collateral synapses in the CA1 at concentrations as low as 100 nM. A selective D1/D5 dopamine receptor antagonist (SCH 23,390, 1 microM) did not affect the ability of GBR 12,935 to enhance LTP, whereas application of the D3 dopamine receptor antagonist U 99,194 (1 microM) blocked the GBR 12,935-induced enhancement in LTP. In addition, a D3 dopamine receptor agonist (7-OH-DPAT, 1 microM) caused a significant increase in LTP, an effect that was also blocked by U 99,194 (3 microM). These results suggest that either endogenously released dopamine (facilitated by DAT blockade) or exogenously applied dopamine agonist can act to increase LTP in the CA1 of the hippocampus via activation of the D3 subtype of dopamine receptor.  相似文献   

8.
Extensive research suggests that long-term potentiation (LTP) may serve as a cellular mechanism for memory and that alterations in synaptic plasticity may underlie the gross memory impairments observed in patients with Alzheimer's disease. Cholinergic facilitation of hippocampal LTP in the behaving rat is a useful model for the study of the effects of anticholinesterase or other drugs on synaptic plasticity. Field excitatory postsynaptic potentials were recorded from the hippocampal CA1 region following excitation of the basal dendrites in behaving male Long-Evans rats. LTP was induced by a high-frequency train (200 Hz for 0.5s duration) following injection of the acetylcholinesterase inhibitor eserine sulfate (0.5 mg/kg, i.p.), specific muscarinic M1 receptor antagonist pirenzepine (21.2 microg/microl, i.c.v.), or saline (i.p. or i.c.v.). Pirenzepine was found to block basal-dendritic LTP when LTP was induced during walking, but not when LTP was induced during immobility. Eserine facilitated LTP when induction occurred during either immobility or walking. The present study demonstrates that an anticholinesterase enhances LTP in CA1 of the behaving rat, and that facilitation of basal-dendritic LTP during walking is mediated by muscarinic M1 receptors.  相似文献   

9.
There is a close correlation between long-term potentiation (LTP) in the synapses of lateral amygdala (LA) and fear conditioning in animals. We predict that reversal of LTP (depotentiation) in this area of the brain may ameliorate conditioned fear. Activation of group II metabotropic glutamate receptors (mGluR II) with DCG-IV induces depotentiation in the LA. The induction of depotentiation is independent of NMDA receptors, L-type Ca++ channels, and calcineurin activity, but requires presynaptic activity and extracellular Ca++. (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG-IV) depotentiation is accompanied by a decrease in the frequency but not the amplitude of miniature excitatory post-synaptic currents (mEPSCs) and could be mimicked by endogenously released glutamate. DCG-IV inhibited the release of glutamate evoked by 4-AP but not that evoked by ionomycin, suggesting that the effect of DCG-IV is not mediated by an action downstream of Ca++ entry. Intra-amygdala infusion of mGluR II agonist blocks the consolidation of fear memory measured with fear-potentiated startle. Taken together, the present results characterize the properties of DCG-IV depotentiation and reveal a close parallel between depotentiation in the amygdala slice and the reduction of conditioned fear in animals.  相似文献   

10.
The dentate gyrus (DG) is among the few areas in the mammalian brain where production of new neurons continues in the adulthood. Although its functional significance is not completely understood, several lines of evidence suggest the role of DG neurogenesis in learning and memory. Considering that long-term potentiation (LTP) is a prime candidate for the process underlying hippocampal learning and memory, these results raise the possibility that LTP and neurogenesis are closely related. Here, we investigated whether or not LTP induction in the afferent pathway triggers enhanced proliferation of progenitor cells in the DG. LTP was induced by tetanic stimulation in perforant path-DG synapses in one hemisphere, and the number of newly generated progenitor (BrdU-labeled) cells in the DG was quantified. Compared with the control hemisphere (stimulated with low-frequency pulses), the LTP-induced hemisphere contained a significantly higher number of newly generated progenitor cells in the dorsal as well as ventral DG. When CPP, an NMDA receptor antagonist, was administered, tetanic stimulation neither induced LTP nor enhanced progenitor cell proliferation, indicating that NMDA receptor activation, rather than tetanic stimulation per se, is responsible for enhanced progenitor proliferation in the control animal. Our results show that tetanic stimulation of perforant path sufficient to induce LTP increases progenitor proliferation in adult DG in an NMDA receptor-dependent manner.  相似文献   

11.
This study was designed to examine the effect of corticosterone on consolidation of contextual fear memory and hippocampal long-term potentiation (LTP) in rats. In Experiment 1, dose–response effects of corticosterone on consolidation of contextual fear memory were determined. Immediately after training in contextual fear conditioning task, rats received different doses of corticosterone. Testing 24 h later, it revealed that corticosterone enhanced memory consolidation in an inverted U shape as evidenced in increased freezing behavior of corticosterone-treated animals. The most effective dose was 3 mg/kg. In Experiment 2, LTP was examined in rats whose memory consolidation has been enhanced with corticosterone. The rats were trained as the above and received corticosterone (3 mg/kg) immediately after training. Immediately or up to one day after retention test, rats were anesthetized with urethane for LTP experiments. For LTP induction, three episodes of high frequency stimuli, 30 s apart, were delivered to the perforant path, each consisting of 10 stimuli at 250 Hz. LTP was assessed by measuring the increase in the initial slope of the population excitatory post-synaptic potentials and the amplitude of the population spikes. Data indicated that animals whose memory has been enhanced by corticosterone, also displayed enhanced hippocampal LTP. The above findings suggest that glucocorticoids may enhance contextual fear memory consolidation via enhancing hippocampal LTP.  相似文献   

12.
The reversibility of long-term potentiation (LTP) and heterosynaptic long-term depression (LTD) lasting weeks was examined in the lateral perforant path of freely moving adult Sprague-Dawley rats. LTP lasting weeks was rapidly reversed within minutes by high-frequency heterosynaptic stimulation of the medial perforant path, in an N-methyl-D-aspartate receptor-dependent manner. LTP reversal also occurred, albeit more slowly and to a lesser extent, when animals were given 1-3 weeks of overnight exposure to an enriched environment (EE). LTD likewise was reversed upon repeated EE exposure. A covert similarity between the degrees of LTP and LTD reversal was revealed when the small potentiation effect of EE treatment by itself on lateral path responses was taken into account. Despite its ability to reverse previously acquired synaptic plasticity, two weeks of EE treatment had no effect on animals' retention of the platform location in a spatial watermaze task, although it did facilitate new learning. These data are in agreement with the hypothesis that hippocampal synapses retain the capacity for rapid synaptic change even when otherwise relatively stable plasticity has previously been induced. Slow reversal of such plasticity did not correlate with a loss of memory retention, possibly because either slow changes permit reorganization of representations such that both old and new information can be accommodated, or else the new information is synaptically represented in orthogonal fashion to the old information.  相似文献   

13.
The hippocampus and the nearby medial temporal lobe structures are required for the formation, consolidation, and retrieval of episodic memories. Sensory information enters the hippocampus via two inputs from entorhinal cortex (EC): One input (perforant path) makes synapses on the dendrites of dentate granule cells as the first set of synapses in the trisynaptic circuit, the other (temporoammonic; TA) makes synapses on the distal dendrites of CA1 neurons. Here we demonstrate that TA-CA1 synapses undergo both early- and late-phase long-term potentiation (LTP) in rat hippocampal slices. LTP at TA-CA1 synapses requires both NMDA receptor and voltage-gated Ca2+ channel activity. Furthermore, TA-CA1 LTP is insensitive to the blockade of fast inhibitory transmission (GABAA-mediated) and, interestingly, is dependent on GABAB-dependent slow inhibitory transmission. These findings indicate that the TA-CA1 synapses may rely on a refined modulation of inhibition to exhibit LTP.  相似文献   

14.
Long-term potentiation (LTP) at input synapses to the lateral nucleus of the amygdala (LA) is a candidate mechanism for memory storage during fear learning. Cellular mechanisms of LTP have been nearly exclusively investigated in coronal brain slices. In our experiments, we used a horizontal brain slice preparation of rats that preserved most of the connections to cortical areas and the hippocampus. The stimulation electrodes were located either within the external capsule (EC) or the LA. The aim of the present study was to investigate the mechanisms of LTP induced either by weak theta burst stimulation (TBS) or strong high frequency stimulation (HFS) using the two different stimulation sites. Whereas both TBS and HFS of afferences running through the LA induced stable LTP, TBS failed to induce LTP of EC-inputs to the LA. The present findings also show that LTP in the LA exhibits vulnerability at different time windows after induction. The time window was dependent on the kind of stimulated afferences. Later LTP becomes resistant to disruption by low frequency stimulation. We could show that both used inputs depended on NMDA receptors for LTP-induction. LTP induced by stimulation of fibers within the LA was not altered by nifedipine (10 microM). In contrast, EC-induced LTP was dependent on L-type voltage-gated calcium channels (VGCC). Finally, we found a higher magnitude of LTP in females using TBS, whereas HFS did not cause gender-specific differences. Our study supports the conclusion that the form of LA-LTP depend on which afferences are activated and what pattern of stimulation is used to induce LTP.  相似文献   

15.
Emotionality as well as cognitive abilities contribute to the acquisition and retrieval of memories as well as to the consolidation of long-term potentiation (LTP), a cellular model of memory formation. However, little is known about the timescale and relative contribution of these processes. Therefore, we tested the effects of weak water maze training, containing both emotional and cognitive demands, on LTP in the hippocampal dentate gyrus. The population spike amplitude (PSA)-LTP was prolonged in all rats irrespective of whether they memorized the platform position or not, whereas the field excitatory postsynaptic potential (fEPSP)-LTP was impaired in good learners and enhanced in poor learners. We then dissociated the behavioral performance of rats during the water maze task by principal component analysis and by means of stress hormone concentrations into underlying "emotional" and "cognitive" factors. PSA-LTP was associated with "emotional" and fEPSP-LTP with "cognitive" behavior. PSA-LTP was depotentiated after the blockade of corticosterone binding mineralocorticoid receptors (MRs) in trained animals, while fEPSP-LTP was unaffected. These results suggest that synaptic processing and encoding of emotional information in the hippocampal dentate gyrus is realized fast and further information transfer is detectable by the reinforcement of PSA-LTP, whereas that of cognitive memories is long lasting.  相似文献   

16.
17.
The heterozygote reeler mouse (HRM) shows many neuroanatomical and biochemical features that are also present in some human cognitive disorders, such as schizophrenia. In the present study, hippocampal dependent plasticity and cognitive function of the HRM were characterized in detail in an attempt to reveal phenotypic functional differences that result from Reelin haploinsufficiency. The HRM and wild type mice show similar levels of overall activity, coordination, thermal nociception, startle responses, and anxiety-like behavior. In addition, both genotypes show similar shock threshold, identical cued freezing behavior and comparable spatial learning in Morris water maze tasks. However, a significant reduction in contextual fear conditioned learning was observed in the HRM. Electrophysiological studies in hippocampal CA1 synapses revealed a plethora of differences between genotypes. The HRM exhibits reduced field excitatory postsynaptic potentials in responses to similar synaptic inputs, lowered paired pulse facilitation ratio and impaired long-term depression and tetanus-induced long-term potentiation (LTP). Also, deficits were detected in LTP elicited by theta burst stimulation or by a whole cell pairing protocol. These physiologic differences could not be accounted for by changes in the overall amount of glutamate receptor subunits. In addition, it was determined that network-driven excitatory and inhibitory activities recorded in CA1 pyramidal neurons showed that the HRM had comparable amplitude and frequency of spontaneous excitatory postsynaptic currents, but a marked reduction in spontaneous inhibitory postsynaptic currents. Thus, the HRM exhibits a specific hippocampal-dependent learning deficit accompanied with a pronounced impairment of hippocampal plasticity and functional inhibitory innervation.  相似文献   

18.
Stress can profoundly affect memory and alter the functioning of the hippocampus and amygdala. Studies have also shown that the antidepressant tianeptine can block the effects of stress on hippocampal and amygdala morphology and synaptic plasticity. We examined the effects of acute predator stress and tianeptine on long-term potentiation (LTP; induced by 100 pulses in 1 s) and primed burst potentiation (PB; a low threshold form of LTP induced by only five physiologically patterned pulses) in CA1 and in the basolateral nucleus (BLA) of the amygdala in anesthetized rats. Predator stress blocked the induction of PB potentiation in CA1 and enhanced LTP in BLA. Tianeptine blocked the stress-induced suppression of PB potentiation in CA1 without affecting the stress-induced enhancement of LTP in BLA. In addition, tianeptine administered under non-stress conditions enhanced PB potentiation in the hippocampus and LTP in the amygdala. These findings support the hypothesis that acute stress impairs hippocampal functioning and enhances amygdaloid functioning. The work also provides insight into the actions of tianeptine with the finding that it enhanced electrophysiological measures of plasticity in the hippocampus and amygdala under stress, as well as non-stress, conditions.  相似文献   

19.
We have previously shown that the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/ MAPK) is transiently activated in anatomically restricted regions of the lateral amygdala (LA) following Pavlovian fear conditioning and that blockade of ERK/MAPK activation in the LA impairs both fear memory consolidation and long-term potentiation (LTP) in the amygdala, in vitro. The present experiments evaluated the role of the ERK/MAPK signaling cascade in LTP at thalamo-LA input synapses, in vivo. We first show that ERK/MAPK is transiently activated/phosphorylated in the LA at 5 min, but not 15 or 60 min, after high-frequency, but not low-frequency, stimulation of the auditory thalamus. ERK activation induced by LTP-inducing stimulation was anatomically restricted to the same regions of the LA previously shown to exhibit ERK regulation following fear conditioning. We next show that intra-LA infusion of U0126, an inhibitor of ERK/MAPK activation, impairs LTP at thalamo-LA input synapses. Collectively, results demonstrate that ERK/MAPK activation is necessary for synaptic plasticity in anatomically defined regions of the LA, in vivo.  相似文献   

20.
In the adult brain, the expression of NT-3 is largely confined to the hippocampal dentate gyrus (DG), an area exhibiting significant neurogenesis. Using a conditional mutant line in which the NT-3 gene is deleted in the brain, we investigated the role of NT-3 in adult neurogenesis, hippocampal plasticity, and memory. Bromodeoxyuridine (BrdU)-labeling experiments demonstrated that differentiation, rather than proliferation, of the neuronal precursor cells (NPCs) was significantly impaired in DG lacking NT-3. Triple labeling for BrdU, the neuronal marker NeuN, and the glial marker GFAP indicated that NT-3 affects the number of newly differentiated neurons, but not glia, in DG. Field recordings revealed a selective impairment in long-term potentiation (LTP) in the lateral, but not medial perforant path-granule neuron synapses. In parallel, the NT-3 mutant mice exhibited deficits in spatial memory tasks. In addition to identifying a novel role for NT-3 in adult NPC differentiation in vivo, our study provides a potential link between neurogenesis, dentate LTP, and spatial memory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号