首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During automated driving (SAE Level 3), drivers can delegate control of the vehicle and monitoring of the road to an automated system. They may then devote themselves to tasks other than driving and gradually lose situational awareness (SA). This could result in difficulty in regaining control of the vehicle when the automated system requires it. In this simulator study, the level of SA was manipulated through the time spent performing a non-driving task (NDRT), which alternated with phases where the driver could monitor the driving scene, prior to a critical takeover request (TOR). The SA at the time of TOR, the visual behaviour after TOR, and the takeover quality were analysed. The results showed that monitoring the road just before the TOR allowed the development of limited perception of the driving situation, which only partially compensated for the lack of a consolidated mental model of the situation. The quality of the recovery, assessed through the number of collisions, was consistent with the level of development of SA. The analysis of visual behaviour showed that engagement in the non-driving task at the time of TOR induced a form of perseverance in consulting the interface where the task was displayed, to the detriment of checking the mirrors. These results underline the importance of helping the driver to restore good SA well in advance of a TOR.  相似文献   

2.
IntroductionThe introduction of automated vehicles to the road environment brings new challenges for older drivers. Level 3 of conditional automation requires drivers to take over control of their vehicle whenever the automated system reaches its limits. Even though autonomous vehicles may be of great benefit to older drivers in terms of safely maintaining their mobility, a better understanding of their takeover performance remains crucial. The objective of this review of the literature is to shed more light on the effects that aging has on takeover performance during automated driving.MethodsThree database searches were conducted: PsychINFO, Web Of Sciences, and TRID. Studies from the last decade which included groups of older drivers were reviewed.ResultsAfter checking through abstracts and texts of articles, 9 articles, 4 proceedings papers, and 1 technical report were included in this review. All studies included a driving simulator that refers to level 3 of automation (which requires supervision by the driver). Five out of fourteen studies showed that older adults had poorer takeover performance (in terms of takeover time and takeover quality) than younger adults. However, several factors, such as the type of non-driving related task (NDRT), were seen to influence takeover performance in older adults. Speed, type and duration of notification interval, distribution and duration of driving modes, and number of takeovers were all also factors of influence.ConclusionThis review synthesizes the results of 14 articles which investigate the effects of age-related changes on takeover performance. Various external factors as NDRTs, speed, type and duration of notification to take over, duration of the automated phase, distribution of the automated/manual phases may affect takeover performance in older adults. Even if the majority of articles showed that older adults are globally slower at taking over a vehicle than younger adults, findings concerning take over quality yield divergent results. It's probably due to age related cognitive changes, particularly in executive functions or to a great heterogeneity in this population. This literature review highlights the need to develop new research on the impact of aging on takeover performance.  相似文献   

3.
Several safety concerns emerge for the transition of control from the automated driving system to a human driver after the vehicle issues a takeover warning under conditional vehicle automation (SAE Level 3). In this context, recent advances in in-vehicle driver monitoring systems enable tracking drivers’ physiological indicators (e.g., eye-tracking and heart rate (HR) measures) to assess their real-time situational awareness (SA) and mental stress. This study seeks to analyze differences in driver’s SA and mental stress over time (i.e., successive experiment runs) using these physiological indicators to assess their impacts on takeover performance. We use eye-tracking measures (i.e., on-road glance rate and road attention ratio) as indicators of driver’s SA during automated driving. Further, we use the pre-warning normalized HR (NHR) and HR variability (HRV) as well as the change in NHR and HRV after the takeover warning as indicators of mental stress immediately before and the change in mental stress after the takeover warning, respectively. To analyze the effects of driver state (in terms of SA and mental stress) on the overall takeover performance, this study uses a comprehensive metric, Takeover Performance Index (TOPI), proposed in our previous work (Agrawal & Peeta, 2021). The TOPI combines multiple driving performance indicators while partly accounting for their interdependencies. Results from statistical analyses of data from 134 participants using driving simulator experiments illustrate significant differences in driver state over successive experiment runs, except for the change in mental stress after the takeover warning. Some significant correlations were found between the physiological indicators of SA and mental stress used in this study. Takeover performance model results illustrate a significant negative effect of change in NHR after the takeover warning on the TOPI. However, none of the other physiological indicators show significant impacts on takeover performance. The study findings provide valuable insights to auto manufacturers for designing integrated in-vehicle driver monitoring and warning systems that enhance road safety and user experience.  相似文献   

4.
Mixed control by driver and automated system will remain in use for decades until fully automated driving is perfected. Thus, drivers must be able to accurately regain control of vehicles in a timely manner when the automated system sends a takeover request (TOR) at its limitation. Therefore, determining the factors that affect drivers’ takeover quality at varying levels of automated driving is important. Previous studies have shown that visually distracting secondary tasks impair drivers’ takeover performance and increase the subjective workload. However, the influence of purely cognitive distracting secondary tasks on drivers’ takeover performance and how this influence varies at different levels of automation are still unknown. Hence, a 5 (driving modes) × 3 (cognitive secondary tasks) factorial design with the within-subject factors was adopted for this driving simulator experiment. The sample consisted of 21 participants. The participants’ subjective workloads were recorded by the NASA-Task Load Index (NASA-TLX). Results showed that compared to manual driving conditions, the drivers’ subjective workloads were significantly reduced in both partially and highly automated driving conditions, even with a TOR, confirming the benefit of the automated driving system in terms of reducing the driving workload. Moreover, the drivers exhibited a lower takeover behavior quality at high levels of automation than manual driving in terms of increased reaction time, abnormal performance, standard deviation of lane position, lane departure probability, and reduced minimum of time to collision. However, at the highly automated driving condition, the drivers’ longitudinal driving safety and ability to follow instructions improved when performing a highly cognitive secondary task. This phenomenon possibly occurred because automated driving conditions lead to an underload phenomenon, and the execution of highly cognitive tasks transfers drivers into moderate load, which helps with the drivers’ takeover performance.  相似文献   

5.
Although it is key to improving acceptability, there is sparse scientific literature on the experience of humans as passengers in partially automated cars. The present study therefore investigated the influence of road type, weather conditions, traffic congestion level, vehicle speed, and human factors (e.g., trust in automated cars) on passenger comfort in an automated car classified as Level 3 according to the Society of Automotive Engineers (SAE). Participants were exposed to scenarios in which a character is driven by an SAE Level 3 automated car in different combinations of conditions (e.g., highway × heavy rain × very congested traffic × vehicle following prescribed speed). They were asked to rate their perceived comfort as if they were the protagonist. Results showed that comfort was negatively affected by driving in downtown (vs. highway), heavy rain, and congested traffic. Interaction analyses showed that reducing the speed of the vehicle improved comfort in these two last conditions, considered either individually or in combination. Cluster analysis revealed four profiles: trusting in automation, averse to speed reduction, risk averse, and mistrusting automation. These profiles were all influenced differently by the driving conditions, and corresponded to varying levels of trust in automated cars. This study suggests that optimizing comfort in automated cars should take account of both driving conditions and human profiles.  相似文献   

6.
For automated driving at SAE level 3 or lower, driver performance in responding to takeover requests (TORs) is decisive in providing system safety. A driver state monitoring system that can predict a driver’s performance in a TOR event will facilitate a safer control transition from vehicle to driver. This experimental study investigated whether driver eye-movement measured before a TOR can predict driving performance in a subsequent TOR event. We recruited participants (N = 36) to obtain realistic results in a real-vehicle study. In the experiment, drivers rode in an automated vehicle on a test track for about 32 min, and a critical TOR event occurred at the end of the drive. Eye movements were measured by a camera-based driver monitoring system, and five measures were extracted from the last 2-min epoch prior to the TOR event. The correlations between each eye-movement measure and driver reaction time were examined, and a multiple regression model was built using a stepwise procedure. The results showed that longer reaction time could be significantly predicted by a smaller number of large saccades, a greater number of medium saccades, and lower saccadic velocity. The implications of these relationships are consistent with previous studies. The present real-vehicle study can provide insights to the automotive industry in the search for a safer and more flexible interface between the automated vehicle and the driver.  相似文献   

7.
Soon, manual drivers will interact with conditionally automated vehicles (CAVs; SAE Level 3) in a mixed traffic on highways. As of yet, it is largely unclear how manual drivers will perceive and react to this new type of vehicle. In a driving simulator study with N = 51 participants aged 20 to 71 years (22 female), we examined the experience and driving behavior of manual drivers at first contact with Level 3 vehicles in four realistic driving scenarios (highway entry, overtaking, merging, introduction of a speed limit) that Level 3 vehicles may handle alone once their operational domain extends beyond driving in congested traffic. We also investigated the effect of an external marking via a visual external human–machine interface (eHMI), with participants being randomly assigned to one of three experimental groups (none, correct, incorrect marking). Participants experienced each driving scenario four times, twice with a human-driven vehicle (HDV), and twice with a CAV. After each interaction, participants rated perceived driving mode of the target vehicle as well as perceived safety and comfort. Minimum time headways between participants and target vehicles served as an indicator of safety criticality in the interactions. Results showed manual driver can distinguish CAVs from HDVs based on behavioral differences. In all driving scenarios, participants rated interactions with CAVs at least as safe as interactions with HDVs. The driving data analysis showed that manual driver interactions with CAVs were largely uncritical. However, the CAVs’ strict rule-compliance led to short time headways of following manual drivers in some cases. The eHMI used in this study neither affected the subjective ratings of the manual drivers nor their driving behavior in mixed traffic. Thus, the results do not support the use of eHMIs on the highway, at least not for the eHMI design used in this study.  相似文献   

8.
The present study was designed to examine the influence of explanation-based knowledge regarding system functions and the driver’s role in conditionally automated driving (Level 3, as defined in SAE J3016). In particular, we studied how safely and successfully drivers assume control of the vehicle when encountering situations that exceed the automation parameters. This examination was conducted through a test-track experiment. Thirty-two younger drivers (mean age = 37.3 years) and 24 older drivers (mean age = 71.1 years) participated in Experiments 1 and 2, respectively. Adopting a between-participants design, in each experiment the participants were divided into two age- and sex-matched groups that were given differing levels of explanation-based knowledge concerning the system limitations of automated driving. The only information given to the less-informed groups was that, during automated driving, drivers may be required to occasionally assume control of the vehicle. The well-informed groups were given the same information, as well as details regarding the auditory-visual alerts produced by the human–machine interface (HMI) during requests to intervene (RtIs), and examples of situations where RtIs would be issued. Ten and nine RtI events were staged for each participant in Experiment 1 and 2, respectively; the participants performed a non-driving-related task while the automated driving system was functioning. For both experiments it was found that, for all RtI events, more participants in the well-informed groups than the less-informed groups successfully assumed control of the vehicle. These results suggest that, in addition to providing information regarding the possible occurrence of RtIs, explanations of HMI and RtI-related situations are effective for helping both younger and older drivers safely and successfully negotiate such events.  相似文献   

9.
Recent and upcoming advances in vehicle automation are likely to change the role of the driver from one of actively controlling a vehicle to one of monitoring the behaviour of an assistant system and the traffic environment. A growing body of literature suggests that one possible side effect of an increase in the degree of vehicle automation is the tendency of drivers to become more heavily involved in secondary tasks while the vehicle is in motion. However, these studies have mainly been conducted in strictly controlled research environments, such as driving simulators and test tracks, and have mainly involved either low levels of automation (i.e., automation of longitudinal control by Adaptive Cruise Control (ACC)) or Highly automated driving (i.e., automation of both longitudinal and lateral control without the need for continuous monitoring). This study aims to replicate these effects during an on-road experiment in everyday traffic and to extend previous findings to an intermediate level of automation, in which both longitudinal and lateral control are automated but the driver must still monitor the traffic environment continuously (so-called Partial automation). N = 32 participants of different age groups and different levels of familiarity with ACC drove in rush-hour traffic on a highway segment. They were assisted by ACC, ACC with steering assistance (ACC+SA), or not at all. The results show that while subjective and objective driving safety were not influenced by the degree of automation, drivers who were already familiar with ACC increased the frequency of interactions with an in-vehicle secondary task in both assisted drives. However, participants generally rated performing the secondary task as less effortful when being assisted, regardless of the automation level (ACC vs. ACC+SA). The results of this on-road experiment thus validate previous findings from more-controlled research environments and extend them to Partially automated driving.  相似文献   

10.
The driver of a conditionally automated vehicle equivalent to level 3 of the SAE is obligated to accept a takeover request (TOR) issued by the vehicle. Considerable research has been conducted on the TOR, especially in terms of the effectiveness of multimodal methods. Therefore, in this study, the effectiveness of various multimodalities was compared and analyzed. Thirty-six volunteers were recruited to compare the effects of the multimodalities, and vehicle and physiological data were obtained using a driving simulator. Eight combinations of TOR warnings, including those implemented through LED lights on the A-pillar, earcon, speech message, or vibrations in the back support and seat pan, were analyzed to clarify the corresponding effects. When the LED lights were implemented on the A-pillar, the driver reaction was faster (p = 0.022) and steering deviation was larger (p = 0.024) than those in the case in which no LED lights were implemented. The speech message resulted in a larger steering deviation than that in the case of the earcon (p = 0.044). When vibrations were provided through the haptic seat, the reaction time (p < 0.001) was faster, and the steering deviation (p = 0.001) was larger in the presence of vibrations in the haptic seat than no vibration. An interaction effect was noted between the visual and auditory modalities; notably, the earcon resulted in a small steering deviation and skin conductance response amplitude (SCR amplitude) when implemented with LED lights on the A-pillar, whereas the speech message led to a small steering deviation and SCR amplitude without the LED lights. In the design of a multimodal warning to be used to issue a TOR, the effects of each individual modality and corresponding interaction effects must be considered. These effects must be evaluated through application to various takeover situations.  相似文献   

11.
Vehicle automation allows drivers to disengage from driving causing a potential decline in their alertness. One of the major challenges of highly automated vehicles is to ensure a timely (with respect to safety and situation awareness) takeover in such conditions. For this purpose, the current study investigated the role of an in-vehicle digital voice-assistant (VA) in conditionally automated vehicles, offering spoken discourse relating specifically to contextual factors, such as the traffic situation and road environment. The study involved twenty-four participants, each taking two drives (counterbalanced): with VA and without VA, in a driving simulator. Participants were required to takeover vehicle control following the issuance of a takeover request (TOR) near the end of each drive. A parametric duration model was adopted to find the key factors determining takeover time (TOT). Paired comparisons showed higher alertness and higher active workload (mean NASA-TLX rating) during automation when accompanied by the VA. Paired t-test comparison of gaze behavior prior to takeover showed significantly higher instances of checking traffic signal, roadside objects, and the roadway during the drive with VA, indicating higher situation awareness. The parametric model indicated that the VA increased the likelihood of making a timely takeover by 39%. There was also some evidence suggesting that male drivers are likely to resume control 1.21 times earlier than female drivers. The study findings highlight the benefits of adopting a digital voice assistant to keep the drivers alert and aware about the recent traffic environment in partially automated vehicles.  相似文献   

12.
A review of the literature on autonomous vehicles has shown that they offer several benefits, such as reducing traffic congestion and emissions, and improving transport accessibility. Until the highest level of automation is achieved, humans will remain an important integral of the driving cycle, which necessitates to fully understand their role in automated driving. A difficult research topic involves an understanding of whether a period of automated driving is likely to reduce driver fatigue rather than increase the risk of distraction, particularly when drivers are involved in a secondary task while driving. The main aim of this research comprises assessing the effects of an automation period on drivers, in terms of driving performance and safety implications. A specific focus is set on the car-following maneuver. A driving simulator experiment has been designed for this purpose. In particular, each participant was requested to submit to a virtual scenario twice, with level-three driving automation: one drive consisting of Full Manual Control Mode (FM); the other comprising an Automated Control Mode (AM) activated in the midst of the scenario. During the automation mode, the drivers were asked to watch a movie on a tablet inside the vehicle. When the drivers had to take control of the vehicle, two car-following maneuvers were planned, by simulating a slow-moving vehicle in the right lane in the meanwhile a platoon of vehicles in the overtaking lane discouraged the passing maneuver. Various driving performances (speeds, accelerations, etc.) and surrogate safety measures (PET and TTC) were collected and analysed, focusing on car-following maneuvers. The overall results indicated a more dangerous behavior of drivers who were previously subjected to driving automation; the percentage of drivers who did not apply the brakes and headed into the overtaking lane despite the presence of a platoon of fast-moving vehicles with unsafe gaps between them was higher in AM drive than in FM drive. Conversely, for drivers who preferred to brake, it was noted that those who had already experienced automated driving, adopted a more careful behavior during the braking maneuver to avoid a collision. Finally, with regard to drivers who had decided to overtake the braking vehicle, it should be noted that drivers who had already experienced automated driving did not change their behavior whilst overtaking the stopped lead vehicle.  相似文献   

13.
Existing driver models mainly account for drivers’ responses to visual cues in manually controlled vehicles. The present study is one of the few attempts to model drivers’ responses to auditory cues in automated vehicles. It developed a mathematical model to quantify the effects of characteristics of auditory cues on drivers’ response to takeover requests in automated vehicles. The current study enhanced queuing network-model human processor (QN-MHP) by modeling the effects of different auditory warnings, including speech, spearcon, and earcon. Different levels of intuitiveness and urgency of each sound were used to estimate the psychological parameters, such as perceived trust and urgency. The model predictions of takeover time were validated via an experimental study using driving simulation with resultant R squares of 0.925 and root-mean-square-error of 73 ms. The developed mathematical model can contribute to modeling the effects of auditory cues and providing design guidelines for standard takeover request warnings for automated vehicles.  相似文献   

14.
Exploring the future mobility of older people is imperative for maintaining wellbeing and quality of life in an ageing society. The forthcoming level 3 automated vehicle may potentially benefit older people. In a level 3 automated vehicle, the driver can be completely disengaged from driving while, under some circumstances, being expected to take over the control occasionally. Existing research into older people and level 3 automated vehicles considers older people to be a homogeneous group, but it is not clear if different sub-groups of old people have different performance and perceptions when interacting with automated vehicles. To fill this research gap, a driving simulator investigation was conducted. We adopted a between-subjects experimental design with subgroup of old age as the independent variable. The differences in performance, behaviour, and perception towards level 3 automated vehicles between the younger old group (60–69 years old) and older old group (70 years old and over) was investigated. 15 subjects from the younger old group (mean age = 64.87 years, SD = 3.46 years) and 24 from the older old group (mean age = 75.13 years, SD = 3.35 years) participated in the study. The findings indicate that older people should not be regarded as a homogeneous group when interacting with automated vehicle. Compared to the younger old people, the older old people took over the control of the vehicle more slowly, and their takeover was less stable and more critical. However, both groups exhibited positive perceptions towards level 3 automation, and the of older old people’s perceptions were significantly more positive. This study demonstrated the importance of recognising older people as a heterogeneous group in terms of their performance, capabilities, needs and requirements when interacting with automated vehicles. This may have implications in the design of such systems and also understanding the market for autonomous mobility.  相似文献   

15.
Highly automated vehicles relieve drivers from driving tasks, allowing them to engage in non-driving-related-tasks (NDRTs). However, drivers are required to take over control in certain circumstances due to the limitations of highly automated vehicles. This study focused on drivers’ eye-movement patterns during take-overs when an NDRT (watching videos) was presented via a head-up-display (HUD) and a mobile device display (MDD), compared to no NDRT as the baseline. The experiment was conducted in a high-fidelity driving simulator with real-world driving videos scenarios. Forty-six participants took part in the experiment by completing three drives in three counterbalanced conditions (HUD, MDD and baseline). A take-over-request was issued towards the end of automated driving requesting drivers to stop the NDRT and take over control. Eye-movement data including pupil diameter, blinks, glance duration and number of AOI (Area of Interest) were collected and analysed. The results show that during automated driving, drivers were more engaged in the MDD NDRT with smaller pupil diameter and shorter glance duration on the front scenario compared to the HUD and baseline modes. The number of AOI was reduced during automated driving in both MDD and HUD modes. The take-over-request redirected drivers’ visual attention back to the driving task from NDRT by increasing drivers’ pupil diameter, glance duration and number of AOI. However, the effect of MDD NDRT on pupil diameter and glance duration continued even after the take-over-request when the NDRT was terminated. The study demonstrated HUD is a better display to help maintain drivers’ attention on the road.  相似文献   

16.
Different motor vehicle manufacturers have recently introduced assistance systems that are capable of both longitudinal and lateral vehicle control, while the driver still has to be able to take over the vehicle control at all times (so-called Partial Automation). While these systems usually allow hands-free driving only for short time periods (e.g., 10 s), there has been little research whether allowing longer time periods of hands-off driving actually has a negative impact on driving safety in situations that the automation cannot handle alone. Altogether, two partially automated assistance systems, differing in the permitted hands-off intervals (Hands-off system vs. Hands-on system, n = 20 participants per assistance condition, age 25–70 years) were implemented in the driving simulation with a realistic take-over concept. The Hands-off system is defined by having a permitted hands-off interval of 120 s, while the Hands-on system is defined by a permitted hands-off interval of 10 s. Drivers’ reactions at a functional system limit were tested under conditions of high ecological validity: while driving in a traffic jam, participants unexpectedly encountered a time-critical situation, consisting of a vehicle at standstill that appeared suddenly and required immediate action. A visual-auditory take-over request was issued to the drivers. Regardless of the hands-off interval, all participants brought the vehicle to a safe stop. In spite of a stronger brake reaction with the Hands-on system, no significant differences between assistance levels were found in brake reaction times and the criticality of the situation. The reason for this may be that most of the drivers kept contact with the steering wheel, even in the Hands-off condition. Neither age nor prior experience with ACC was found to impact the results. The study thus demonstrates that permitting longer periods of hands-off driving does not necessarily lead to performance deficits of the driver in the case of take-over situations, if a comprehensive take-over concept is implemented.  相似文献   

17.
The success of highly automated vehicles (HAVs; SAE Level 4) will depend to a large extent on how well they are accepted by their future passengers. This is especially true for the interaction of these vehicles with other human road users in mixed traffic. In future urban traffic, passengers of HAVs will observe from a passive position how the automated system resolves space-sharing conflicts with crossing vulnerable road users (VRUs; e.g., pedestrians and cyclists) at junctions. For one such crossing-paths conflict, we investigated when passengers would want the HAV to start braking and how much perceived risk passengers accept in the interaction of their vehicle with VRUs. To this end, we conducted 1) an online video study (N = 118), 2) a driving simulator study (N = 28), and 3) a human&vehicle-in-the-loop (Hu&ViL) study at a test site (N = 10). We varied the speed of the HAV (30 km/h vs. 50 km/h), the type (cyclist vs. pedestrian), and crossing direction of the VRU (left vs. right). During the approach to the junction, passengers' task was to trigger the HAV's braking maneuver, in a first trial at the point they considered ideal and in a second trial at the last point they still considered safe enough to decelerate and come to a stop at the stop line. For each braking maneuver, we analyzed the HAV’s distance and time-to-arrival (TTA) to the VRU at braking onset, as well as passengers’ perceived risk in the VRU interaction. The results showed that most passengers preferred harmless interactions with VRUs (at the ideal braking onset time), and accepted unpleasant, but not dangerous interactions at most (at the last acceptable braking onset time). Methodologically, the results were very similar in the three different environments (online, driving simulator, real vehicle). These results clearly show that, in addition to the technical considerations of safe automated driving, passengers’ perception and evaluation of HAV driving behavior should also be taken into account to achieve a satisfying level of acceptance of these vehicles.  相似文献   

18.
Automated Commercial Motor Vehicles (CMVs) have the potential to reduce the occurrence of crashes, enhance traffic flow, and reduce the stress of driving to a larger extent. Since fully automated driving (SAE Level 5) is not yet available, automated driving systems cannot perform all driving tasks under all road conditions. Drivers need to regain the vehicle’s control when the system reaches its maximum operational capabilities. This transition from automated to manual is referred to as Take-Over Request (TOR). Evaluating driver’s performance after TORs and assessing effective parameters have gained much attention in recent years. However, few studies have addressed CMV drivers’ driving behavior after TOR and the effect of long-automated driving and repeated TORs. This paper aims to address this gap and gain behavioral insights into CMV drivers’ driving behavior after TOR and assess the effect of the duration of automated operation before TOR, repeated TORs, and driver characteristics (e.g., age, gender, education, and driving history). To accomplish this, we designed a 40-minutes experiment on a driving simulator and assessed the responses of certified CMV drivers to TORs. Drivers’ reaction time and driving behavior indices (e.g., acceleration, velocity, and headway) are compared to continuous manual driving to measure driving behavior differences. Results showed that CMV drivers’ driving behavior changes significantly after the transition to manual regardless of the number of TORs and the duration of automated driving. Findings suggest that 30 min of automated operation intensifies the effect of TOR on driving behaviors. In addition, repeated TOR improves reaction times to TOR and reduces drivers' maximum and minimum speed after TORs. Driver’s age and driving history showed significant effects on reaction time and some driving behavior indices. The findings of this paper provide valuable information to automotive companies and transportation planners on the nature of driver behavior changes due to the carryover effects of manual driving right after automated driving episodes in highly automated vehicles.  相似文献   

19.
The success of introducing automated driving systems to consumers will depend on an appropriate understanding and human-automation interaction with this technology. Educating users on driving automation technology bears the potential to attain these two requirements. In a driving simulator study, we investigated the effects of user education on mental models, human-automation interaction performance (i.e., time on task, error rate, experimenter rating) and satisfaction with a Human-Machine Interface (HMI) for automated driving. N = 80 participants were randomly assigned to one of three different user education conditions or to a baseline. Subsequently, they completed several driver-initiated control transitions between manual, Level 2 (L2), and Level 3 (L3) automated driving. The results revealed that user education promoted an accurate evolution of mental models for driving automation. These, in turn, facilitated interaction performance in transitions from manual to both L2 and L3 automated driving. There was no comparable influence of prior education on performance in transitions between the automation levels. Due to the performance enhancing effects of user education, no further improvements of interaction performance were observed for educated users in comparison to uneducated users. There was no effect of user education on satisfaction. The current findings emphasize the necessity to provide information about automated vehicle HMIs to first-time users to support accurate understanding and behavior. Based on the current findings, we propose conceptual approaches to teach users and derive implications for user studies on automated vehicle HMIs.  相似文献   

20.
In the near future, conditionally automated vehicles (CAVs; SAE Level 3) will travel alongside manual drivers (≤ SAE level 2) in mixed traffic on the highway. It is yet unclear how manual drivers will react to these vehicles beyond first contact when they interact repeatedly with multiple CAVs on longer highway sections or even during entire highway trips. In a driving simulator study, we investigated the subjective experience and behavioral reactions of N = 51 manual drivers aged 22 to 74 years (M = 41.5 years, SD = 18.1, 22 female) to driving in mixed traffic in repeated interactions with first-generation Level 3 vehicles on four highway sections (each 35 km long), each of which included three typical speed limits (80 km/h, 100 km/h, 130 km/h) on German highways. Moreover, the highway sections differed regarding the penetration rate of CAVs in mixed traffic (within-subjects factor; 0%, 25%, 50%, 75%). The drivers were assigned to one of three experimental groups, in which the CAVs differed regarding their external marking, (1) status eHMI, (2) no eHMI, and (3) a control group without information about the mixed traffic. After each highway section, drivers rated perceived safety, comfort, and perceived efficiency. Drivers were also asked to estimate the penetration rate of CAVs on the previous highway section. In addition, we analyzed drivers’ average speed and their minimum time headways to lead vehicles for each speed zone (80 km/h, 100 km/h, 130 km/h) as well as the percentage of safety critical interactions with lead vehicles (< 1 s time headway). Results showed that manual drivers experienced driving in mixed traffic, on average, as more uncomfortable, less safe and less efficient than driving in manual traffic, but not as dangerous. A status eHMI helps manual drivers identify CAVs in mixed traffic, but the eHMI had no effect on manual drivers’ subjective ratings or driving behavior. Starting at a level of 25% Level 3 vehicles in mixed traffic, participants' average speed decreased significantly. At the same time, the percentage of safety critical interactions with lead vehicles increased with an increasing penetration rate of CAVs. Accordingly, additional measures may be necessary in order to at least keep the existing safety level of driving on the highway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号