首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
BackgroundThe pharmacology of traumatic memory extinction has not been fully characterized despite its potential as a therapeutic target for established, acquired anxiety disorders, including post-traumatic stress disorder (PTSD). Here we examine the role of endogenous glucocorticoids in traumatic memory extinction.MethodsMale C57BL/6J mice were injected with corticosterone (10 mg/kg, i.p.) or metyrapone (50 mg/kg, s.c.) during re-activation of a contextual fear memory, and compared to vehicle groups (N = 10–12 per group). To ensure that metyrapone was blocking corticosterone synthesis, we measured corticosterone levels following re-activation of a fear memory in metyrapone- and vehicle-treated animals.ResultsCorticosterone administration following extinction trials caused a long-lasting inhibition of the original fear memory trace. In contrast, blockade of corticosteroid synthesis with metyrapone prior to extinction trials enhanced retrieval and prevented extinction of context-dependent fear responses in mice. Further behavioral analysis suggested that the metyrapone enhancement of retrieval and prevention of extinction were not due to non-specific alterations in locomotor or anxiety-like behavior. In addition, the inhibition of extinction by metyrapone was rescued by exogenous administration of corticosterone following extinction trials. Finally, we confirmed that the rise in corticosterone during re-activation of a contextual fear memory was blocked by metyrapone.ConclusionsWe demonstrate that extinction of a classical contextual fear memory is dependent on endogenous glucocorticoid synthesis during re-activation of a fear memory. Our data suggest that decreased glucocorticoids during fear memory re-activation may contribute to the inability to extinguish a fear memory, thus contributing to one of the core symptoms of PTSD.  相似文献   

2.
《Behavior Therapy》2018,49(6):1008-1019
Extinction learning, which creates new safety associations, is thought to be the mechanism underlying exposure therapy, commonly used for the treatment of anxiety disorders and posttraumatic stress disorder. The relative strength and availability for retrieval of both the fear and safety memories determine the response in a given situation. While the fear memory is often context-independent and may easily generalize, extinction memory is highly context-specific. “Renewal” of the extinguished fear memory might thus occur following a shift in context. The aim of the current work was to create an enhanced and generalized extinction memory to a discrete stimulus using stress exposure before extinction learning, thereby preventing renewal. In our contextual fear conditioning paradigm, 40 healthy men acquired (Day 1), retrieved and extinguished (Day 2) the fear memories, with no differences between the stress and the control group. A significant difference between the groups emerged in the renewal test (Day 3). A renewal effect was seen in the control group (N = 20), confirming the context-dependency of the extinction memory. In contrast, the stress group (N = 20) showed no renewal effect. Fear reduction was generalized to the acquisition context as well, suggesting that stress rendered the extinction memory more context-independent. These results are in line with previous studies that showed contextualization disruption as a result of pre-learning stress, mediated by the rapid effects of glucocorticoids on the hippocampus. Our findings support research investigating the use of glucocorticoids or stress induction in exposure therapy and suggest the right timing of administration in order to optimize their effects.  相似文献   

3.
Extinction of Pavlovian fear conditioning in rats is a useful model for therapeutic interventions in humans with anxiety disorders. Recently, we found that delivering extinction trials soon (15 min) after fear conditioning yields a short-term suppression of fear, but little long-term extinction. Here, we explored the possible mechanisms underlying this deficit by assessing the suppression of fear to a CS immediately after extinction training (Experiment 1) and the context specificity of fear after both immediate and delayed extinction training (Experiment 2). We also examined the time course of the immediate extinction deficit (Experiment 3). Our results indicate that immediate extinction produces a short-lived and context-independent suppression of conditional freezing. Deficits in long-term extinction were apparent even when the extinction trials were given up to 6 h after conditioning. Moreover, this deficit was not due to different retention intervals that might have influenced the degree of spontaneous recovery after immediate and delayed extinction (Experiment 4). These results suggest that fear suppression under immediate extinction may be due to a short-term, context-independent habituation process, rather than extinction per se. Long-term extinction memory only develops when extinction training occurs at least six hours after conditioning.Pavlovian fear conditioning and extinction are important behavioral models for studying the brain mechanisms underlying the acquisition, storage, retrieval, and suppression of traumatic fear (LeDoux 2000; Maren 2001, 2005; Kim and Jung 2005). In this procedure, an emotionally neutral stimulus, such as a tone, is paired with an aversive stimulus (US), such as an electric foot shock. After a few tone–foot shock pairings, the previous neutral tone becomes a potent conditioned stimulus (CS) and acquires the ability to elicit fear responses, such as freezing (CR). However, with repeated presentations of the CS-alone, the previously acquired CR gradually subsides, a process called extinction (Davis et al. 2003; Maren and Quirk 2004; Kim and Jung 2005; Myers and Davis 2007). The behavioral processes and the underlying neural mechanisms of extinction have attracted extensive attention in contemporary research of learning and memory (Bouton et al. 2006). Indeed, it has been suggested that failure to extinguish fear may contribute to post-traumatic stress disorder (PTSD) (Bouton et al. 2001; Rothbaum and Davis 2003). To avoid the possible long-term consequences and costs of PTSD or other anxiety disorders, clinical interventions are essential. While early interventions may manage the stress response to trauma, their efficacy has been challenged, because the acute intense stress of the traumatic experience might actually exacerbate relapse of fear (McNally 2003; Rothbaum and Davis 2003; Gray and Litz 2005). Thus, it is essential to learn when these interventions generate the best long-term extinction of fear responses.In a recent study, we demonstrated that delivering extinction trials shortly after fear conditioning yields poor long-term fear reduction (Maren and Chang 2006; but, see Myers et al. 2006). We observed that conditional freezing decreased during extinction training, but recovered completely 24 h later. This was true even when we gave 225 massed extinction trials 15 min after fear conditioning. However, in these experiments the within-session decrease in fear in rats that underwent extinction was similar to that in rats that were not exposed to extinction trials. Thus, it is unclear to what extent the short-term fear suppression we observed was due to a loss of fear to the context, the auditory CS, or both. It is also not clear whether fear suppression was due to extinction or, alternatively, another learning process such as habituation.To examine these issues further, in the present study we first assessed fear suppression to the auditory CS after immediate extinction by probing CS fear 15 min after extinction training. In a second experiment, we examined whether short-term fear suppression to the CS is renewed outside of the extinction context, as context specificity is one of the hallmarks of extinction (Bouton 2002; Ji and Maren 2007). In the third and fourth experiments, we examined the temporal delay necessary between conditioning and extinction to yield long-term suppression of fear. In our previous work (Maren and Chang 2006), all phases of training were conducted in the same context. Therefore, fear to the context decreased conditional freezing to the tone, particularly when extinction occurred shortly after conditioning, a time at which sensitized context fear was high. In an effort to isolate fear to the tone CS during extinction, we conducted extinction and test sessions in a context that was different from the conditioning context (i.e., an ABB procedure, where each letter denotes the context used for conditioning, extinction, and test, respectively). Our results reveal that delivering CS-alone trials shortly after fear conditioning produces a short-lived and context-independent suppression of freezing. This fear suppression may be due to a short-term, context-independent habituation process, rather than extinction. Furthermore, poor long-term extinction occurs even when the extinction trials were administered up to 6 h after conditioning.  相似文献   

4.
Clinical research has linked post-traumatic stress disorder (PTSD) with deficits in fear extinction. However, it is not clear whether these deficits result from stress-related changes in the acquisition or retention of extinction or in the regulation of extinction memories by context, for example. In this study, we used the single prolonged stress (SPS) animal model of PTSD and fear conditioning procedures to examine the effects of prior traumatic stress on the acquisition, retention, and context-specificity of extinction. SPS administered one week prior to fear conditioning had no effect on the acquisition of fear conditioning or extinction but disrupted the retention of extinction memories for both contextual and cued fear. This SPS effect required a post-stress incubation period to manifest. The results demonstrate that SPS disrupts extinction retention, leading to enhanced fear renewal; further research is needed to identify the neurobiological processes through which SPS induces these effects.  相似文献   

5.
Reactivation of stabilized memories returns them to a labile state and causes them to undergo extinction or reconsolidation processes. Although it is well established that administration of glucocorticoids after training enhance consolidation of contextual fear memories, but their effects on post-retrieval processes are not known. In this study, we first asked whether administration of corticosterone after memory reactivation would modulate subsequent expression of memory in rats. Additionally, we examined whether this modulatory action would depend upon the strength of the memory. We also tested the effect of propranolol after memory reactivation. Adult male Wistar rats were trained in a fear conditioning system using moderate (0.4 mA) or high shock (1.5 mA) intensities. For reactivation, rats were returned to the chamber for 90 s 24h later. Immediately after reactivation, rats were injected with corticosterone (1, 3 or 10mg/kg) or vehicle. One, 7 and 14 days after memory reactivation, rats were returned to the context for 5 min, and freezing behavior was scored. The findings indicated that corticosterone when injected after memory reactivation had no significant effect on recall of a moderate memory, but it impaired recall of a strong memory at a dose of 3mg/kg. Propranolol (5mg/kg) given after the reactivation treatment produced a modest impairment that persisted over three test sessions. Further, the results showed that corticosterone, but not propranolol deficit was reversed by a reminder shock. These findings provide evidence that administration of glucocorticoids following memory reactivation reduces subsequent retrieval of strong, but not moderate, contextual conditioned fear memory likely via acceleration of memory extinction. On the other hand, propranolol-induced amnesia may result from blockade of reconsolidation process. Further studies are needed to determine the underlying mechanisms.  相似文献   

6.
Recent models on cognitive aging consider the ability to maintain and update context information to be a key source of age-related impairments in various cognitive tasks (Braver & Barch in Neuroscience & Biobehavioral Reviews, 26: 809–817, 2002). Context updating has been investigated with a modified AX-continuous-performance task by comparing performance and brain activity between context-dependent trials (i.e., correct responses require updating of the preceding cue information) and context-independent trials (i.e., correct responses are independent of cue information). We used an event-related potential (ERP) approach to identify sources of age differences in context processing in the early and late processing of cue information. Our behavioral data showed longer latencies and higher error rates on context-dependent than on context-independent trials for older than for younger adults, suggesting age-related impairments in context updating. The ERP data revealed larger P3b amplitudes for context-dependent than for context-independent trials only in younger adults. In contrast, in older adults, P3b amplitudes were more evenly distributed across the scalp and did not differ between context conditions. Interestingly, older but not younger adults were sensitive to changes of cue identity, as indicated by larger P3b amplitudes on cue-change than on cue-repeat trials, irrespective of the actual context condition. We also found a larger CNV on context-dependent than on context-independent trials, reflecting active maintenance of context information and response preparation. The age-differential effects in the P3b suggest that both younger and older adults were engaged in updating task-relevant information, but relied on different information: Whereas younger participants indeed relied on context cues to update and reconfigure the task settings, older adults relied on changes in cue identity, irrespective of context information.  相似文献   

7.
Contextual fear conditioning under training conditions involving high stressor intensities has been proposed as an animal model for traumatic memories. The strength of memory for this task has been related to the intensity of the conditioning stressor and post-training corticosterone values. However, administration of a glucocorticoid receptor (GR) antagonist only attenuated memory for this task in rats conditioned at a moderate shock intensity (0.4 mA), but failed to influence conditioning in rats trained at a high shock intensity (1 mA). Here, we further questioned whether interfering with glucocorticoid action at the time of training might be effective in influencing contextual fear conditioning in rats trained under different shock intensities. Rats were subcutaneously injected with the glucocorticoid synthesis inhibitor metyrapone (50, 100 mg/kg) 90 min before being trained in the contextual fear conditioning task, at either 0.4 or 1 mA shock intensities. The results showed that metyrapone, in a dose-dependent manner: (i) attenuated long-term expression of contextual fear conditioning, both in 0.4- and 1 mA-trained rats; and (ii) efficiently prevented increased plasma corticosterone concentration. In addition to further supporting a facilitating role of glucocorticoids in memory consolidation, these findings suggest a critical involvement of these hormones in the formation of traumatic memories.  相似文献   

8.
Chronic stress facilitates fear conditioning in rats with hippocampal neuronal atrophy and in rats in which the atrophy is prevented with tianeptine, a serotonin re-uptake enhancer. The purpose of this study was to determine whether the lack of dissociation between fear conditioning performance and hippocampal integrity was masked by the presence of endogenous corticosteroids during training. As in previous studies, rats were stressed by daily restraint (6 h/day for 21 days), trained in the conditioning chamber (day 23), and then assessed for conditioned fear (day 25) at a time when hippocampal dendritic atrophy persists. On the training day, half of the control and stressed rats were. injected with metyrapone to reduce corticosterone release. Two hours later, two paired or unpaired presentations of tone and footshock were delivered. Although metyrapone reduced conditioned fear in all rats, only stressed rats showed dissociated fear conditioning (i.e. tone conditioning was reduced while contextual conditioning was eliminated). Chronically stressed rats, regardless of metyrapone treatment displayed more rearing in the open field when tested immediately after the completion of fear conditioning. These data support the hypothesis that increased emotionality and enhanced fear conditioning exhibited by chronically stressed rats maybe due to endogenous corticosterone secretion at the time of fear conditioned training. Moreover,these data suggest that chronic stress impairs hippocampal-dependent processes more robustly than hippocampal-independent processes after metyrapone to reduce corticosterone secretion during aversive training.  相似文献   

9.
高唤醒是创伤后应激障碍(PTSD)的主要症状之一, 对创伤后应激障碍的形成与发展起核心作用。急性应激期产生的高唤醒可以预测其后PTSD的回避与麻木、再体验等症状的形成, 在创伤后早期, 降低唤醒程度可以减轻PTSD相关的症状表现。下丘脑-垂体-肾上腺轴异常变化会导致去甲肾上腺素(NE)、促肾上腺皮质激素释放因子(CRF)过度释放, 同时皮质醇(酮)水平下降, 这二者是高唤醒产生与维持的主要原因。另外, 5-羟色胺(5-HT)系统的高度激活也影响了高唤醒的形成。食欲素神经肽与NE、CRF与5-HT系统有密切的神经联系, 可能参与高唤醒的调节, 是近年来研究的一个热点。  相似文献   

10.
Recent studies focus on the functional significance of a novel form of synaptic plasticity, low-frequency stimulation (LFS)-induced synaptic potentiation in the hippocampal CA1 area. In the present study, we elucidated dynamic changes in synaptic function in the CA1 field during extinction processes associated with context-dependent fear memory in freely moving rats, with a focus on LFS-induced synaptic plasticity. Synaptic transmission in the CA1 field was transiently depressed during each extinction trial, but synaptic efficacy was gradually enhanced by repeated extinction trials, accompanied by decreases in freezing. On the day following the extinction training, synaptic transmission did not show further changes during extinction retrieval, suggesting that the hippocampal synaptic transmission that underlies extinction processes changes in a phase-dependent manner. The synaptic potentiation produced by extinction training was mimicked by synaptic changes induced by LFS (0.5 Hz) in the group that previously received footshock conditioning. Furthermore, the expression of freezing during re-exposure to footshock box was significantly reduced in the LFS application group in a manner similar to the extinction group. These results suggest that LFS-induced synaptic plasticity may be associated with the extinction processes that underlie context-dependent fear memory. This hypothesis was supported by the fact that synaptic potentiation induced by extinction training did not occur in a juvenile stress model that exhibited extinction deficits. Given the similarity between these electrophysiological and behavioral data, LFS-induced synaptic plasticity may be related to extinction learning, with some aspects of neuronal oscillations, during the acquisition and/or consolidation of extinction memory.  相似文献   

11.
大多数人在其一生中都会经历创伤事件,但只有少数人会发展成为创伤后应激障碍(PTSD)。焦虑障碍的易感性和保护因素成为一个重要议题。基于恐惧记忆习得与消退模型的研究发现女性个体表现出“易习得、难消退”的特点。在恐惧相关脑区的脑生理结构、功能/结构连接性、以及大脑可塑性的性别差异可能是该特征的根本原因。性激素作为一种焦虑障碍的保护因素,可以调节这种性别差异,这种调节效应可能是通过影响大脑结构形态(如神经细胞的形态和数量)、调控与记忆相关基因的表达(如HDAC4)而实现的。雌性激素水平的不稳定性可能是女性易感焦虑障碍的重要原因。未来对性别差异的深入研究将有助于推进个性化医疗。  相似文献   

12.
Ehlers and Clark [(2000). A cognitive model of post-traumatic stress disorder. Behaviour Research and Therapy, 38, 319-345] cognitive model of post-traumatic stress disorder (PTSD) has been relatively untested with children. Seventy-five children (7-16 years) were interviewed within 4 weeks of an injury that led to hospital treatment to examine whether peri-traumatic processing strategies (data-driven processing and fear) were associated with perceptions of memory quality and intrusive memories. Perceptions of memory quality mediated the relationship between data-driven processing and intrusive reactions but not avoidance, arousal or depressive reactions. Finally, the relationship between peri-event fear and intrusion reactions was mediated by perceptions of memory quality even after data-driven processing was controlled. The implications of these findings are discussed in the context of a cognitive developmental model of PTSD in children.  相似文献   

13.
Enhanced fear learning occurs subsequent to traumatic or stressful events and is a persistent challenge to the treatment of post-traumatic stress disorder (PTSD). Facilitation of learning produced by prior stress can elicit an exaggerated fear response to a minimally aversive event or stimulus. Stress-enhanced fear learning (SEFL) is a rat model of PTSD; rats previously exposed to the SEFL 15 electrical shocks procedure exhibit several behavioral responses similar to those seen in patients with PTSD. However, past reports found that SEFL is not mitigated by extinction (a model of exposure therapy) when the spaced extinction began 24?h after stress. Recent studies found that extinction from 10?min to 1?h subsequent to fear conditioning "erased" learning, whereas later extinction, occurring from 24 to 72?h after conditioning did not. Other studies indicate that massed extinction is more effective than spaced procedures. Therefore, we examined the time-dependent nature of extinction on the stress-induced enhancement of fear learning using a massed trial's procedure. Experimental rats received 15 foot shocks and were given either no extinction or massed extinction 10?min or 72?h later. Our present data indicate that SEFL, following traumatic stress, is resistant to immediate massed extinction. Experimental rats showed exaggerated new fear learning regardless of when extinction training occurred. Thus, post-traumatic reactivity such as SEFL does not seem responsive to extinction treatments.  相似文献   

14.
个体经历严重创伤性事件后可能会形成创伤后应激障碍(posttraumatic stress disorder, PTSD)。在创伤经历中形成的情绪记忆是以后发展为PTSD的重要病理机制。PTSD的形成涉及到情绪记忆的过度巩固, 而去甲肾上腺素能神经信号可增强情绪记忆的巩固和再巩固。因此, 在创伤记忆的巩固和再巩固期间阻断去甲肾上腺素能神经信号, 而在创伤记忆的消退期间增强去甲肾上腺素能神经信号, 可能会破坏和或抑制病理性的情绪记忆, 从而预防或治疗PTSD。  相似文献   

15.
周萍  肖华  李勇辉  董昕文 《心理学报》2022,54(6):604-612
剧烈的应激刺激会引起持续的高唤醒状态, 是多种应激障碍的核心症状, 并推进其他症状的发生发展。本研究关注5-羟色胺在应激诱发高唤醒的发生、发展中的作用, 通过测量听觉惊吓反射水平反映高唤醒状态, 考察色氨酸羟化酶-2基因缺陷小鼠在天敌或电击应激前后高唤醒的变化。研究发现, 雄性基因缺陷小鼠在应激后出现持续一周以上的高唤醒表现, 而野生型小鼠高唤醒状态很快恢复。结果提示, 基因缺陷引起的5-羟色胺降低可能是强应激诱发的持续高唤醒的易感因素。  相似文献   

16.
Chronic stress effects and sex differences were examined on conditioned fear extinction. Male and female Sprague–Dawley rats were chronically stressed by restraint (6 h/d/21 d), conditioned to tone and footshock, followed by extinction after 1 h and 24 h delays. Chronic stress impaired the recall of fear extinction in males, as evidenced by high freezing to tone after the 24 h delay despite exposure to the previous 1 h delay extinction trials, and this effect was not due to ceiling effects from overtraining during conditioning. In contrast, chronic stress attenuated the recall of fear conditioning acquisition in females, regardless of exposure to the 1 h extinction exposure. Since freezing to tone was reinstated following unsignalled footshocks, the deficit in the stressed rats reflected impaired recall rather than impaired consolidation. Sex differences in fear conditioning and extinction were observed in nonstressed controls as well, with control females resisting extinction to tone. Analysis of contextual freezing showed that all groups (control, stress, male, female) increased freezing immediately after the first tone extinction trial, demonstrating contextual discrimination. These findings show that chronic stress and sex interact to influence fear conditioning, with chronic stress impairing the recall of delayed fear extinction in males to implicate the medial prefrontal cortex, disrupting the recall of the fear conditioning acquisition in females to implicate the amygdala, and nonstressed controls exhibiting sex differences in fear conditioning and extinction, which may involve the amygdala and/or corticosterone levels.  相似文献   

17.
已有动物和人类研究均表明, 通过记忆的再巩固更新机制能有效削弱新形成的条件性恐惧记忆(1天), 并且存在线索选择性特点。然而创伤后应激障碍(PTSD)往往在形成相当一段时间后才能得到治疗, 且现实生活中人们通常一次习得对多个线索的恐惧。因此找到针对多线索创伤记忆的有效治疗方法显得尤为重要。目前未有人研究远期恐惧记忆的再巩固更新机制是否存在线索选择性特点。为探究远期恐惧记忆(>7天)的再巩固更新机制是否同样存在线索选择性特点, 本研究采用被试内实验设计, 以皮肤电作为恐惧反应指标, 多个线索作为条件刺激进行恐惧习得, 习得14天后给被试单独呈现一个线索进行恐惧记忆提取, 10分钟后进行消退训练, 24小时后对不同线索进行自发恢复测试。结果显示:未提取线索的自发恢复程度显著高于提取线索。说明远期记忆(14天)的再巩固更新机制同样存在线索选择性特点, 并确认了提取消退作为一种行为手段对远期恐惧记忆再巩固进行干预的有效性, 对临床干预具有一定指导意义。  相似文献   

18.
Intrusive memories are common in the immediate aftermath of traumatic events, but neither their presence or frequency are good predictors of the persistence of posttraumatic stress disorder (PTSD). Two studies of assault survivors, a cross-sectional study (N=81) and a 6-month prospective longitudinal study (N=73), explored whether characteristics of the intrusive memories improve the prediction. Intrusion characteristics were assessed with an Intrusion Interview and an Intrusion Provocation Task. The distress caused by the intrusions, their "here and now" quality, and their lack of a context predicted PTSD severity. The presence of intrusive memories only explained 9% of the variance of PTSD severity at 6 months after assault. Among survivors with intrusions, intrusion frequency only explained 8% of the variance of PTSD symptom severity at 6 months. Nowness, distress and lack of context explained an additional 43% of the variance. These intrusion characteristics also predicted PTSD severity at 6 months over and above what could be predicted from PTSD diagnostic status at initial assessment. Further predictors of PTSD severity were rumination about the intrusive memories, and the ease and persistence with which intrusive memories could be triggered by photographs depicting assaults. The results have implications for the early identification of trauma survivors at risk of chronic PTSD.  相似文献   

19.
After extinction of conditioned fear, memory for the conditioning and extinction experiences becomes context dependent. Fear is suppressed in the extinction context, but renews in other contexts. This study characterizes the neural circuitry underlying the context-dependent retrieval of extinguished fear memories using c-Fos immunohistochemistry. After fear conditioning and extinction to an auditory conditioned stimulus (CS), rats were presented with the extinguished CS in either the extinction context or a second context, and then sacrificed. Presentation of the CS in the extinction context yielded low levels of conditioned freezing and induced c-Fos expression in the infralimbic division of the medial prefrontal cortex, the intercalated nuclei of the amygdala, and the dentate gyrus (DG). In contrast, presentation of the CS outside of the extinction context yielded high levels of conditioned freezing and induced c-Fos expression in the prelimbic division of the medial prefrontal cortex, the lateral and basolateral nuclei of the amygdala, and the medial division of the central nucleus of the amygdala. Hippocampal areas CA1 and CA3 exhibited c-Fos expression when the CS was presented in either context. These data suggest that the context specificity of extinction is mediated by prefrontal modulation of amygdala activity, and that the hippocampus has a fundamental role in contextual memory retrieval.Considerable interest has emerged in recent years in the neural mechanisms underlying the associative extinction of learned fear (Maren and Quirk 2004; Myers et al. 2006; Quirk and Mueller 2008). Notably, extinction is a useful model for important aspects of exposure-based therapies for the treatment of human anxiety disorders such as panic disorder and post-traumatic stress disorder (PTSD) (Bouton et al. 2001, 2006). During extinction, a conditioned stimulus (CS) is repeatedly presented in the absence of the unconditioned stimulus (US), a procedure that greatly reduces the magnitude and probability of the conditioned response (CR). After the extinction of fear, there is substantial evidence that extinction does not erase the original fear memory, but results in a transient inhibition of fear. For example, extinguished fear responses return after the mere passage of time (i.e., spontaneous recovery) or after a change in context (i.e., renewal) (Bouton et al. 2006; Ji and Maren 2007). In other words, extinguished fear is context specific. The return of fear after extinction is a considerable challenge for maintaining long-lasting fear suppression after exposure-based therapies (Rodriguez et al. 1999; Hermans et al. 2006; Effting and Kindt 2007; Quirk and Mueller 2008).In the last several years, considerable progress has been made in understanding the neural mechanisms underlying the context specificity of fear extinction. For example, lesions or inactivation of the hippocampus prevent the renewal of fear when an extinguished CS is presented outside of the extinction context (Corcoran and Maren 2001, 2004; Corcoran et al. 2005; Ji and Maren 2005, 2008; Hobin et al. 2006). In addition, neurons in the basolateral complex of the amygdala exhibit context-specific spike firing to extinguished CSs (Hobin et al. 2003; Herry et al. 2008), and this requires hippocampal input (Maren and Hobin 2007). Indeed, amygdala neurons that fire more to extinguished CSs outside of the extinction context are monosynaptically excited by hippocampal stimulation (Herry et al. 2008). In contrast, neurons that responded preferentially to extinguished CSs in the extinction context receive synaptic input from the medial prefrontal cortex (Herry et al. 2008).The prevalent theory of the interactions between the prefrontal cortex, hippocampus, and amygdala that lead to regulation of fear by context assumes that when animals experience an extinguished CS in the extinction context, the hippocampus drives prefrontal cortex inhibition of the amygdala to suppress fear (Hobin et al. 2003; Maren and Quirk 2004; Maren 2005). When animals encounter an extinguished CS outside of the extinction context, the hippocampus is posited to inhibit the prefrontal cortex and thereby promote amygdala activity required to renew fear. The hippocampus may also drive fear renewal through its direct projections to the basolateral amygdala (Herry et al. 2008). Although this model accounts for much of the extant literature on the context specificity of extinction, it is not known whether the nodes of this hypothesized neural network are coactive during the retrieval of fear and extinction memories. As a first step in addressing this issue, we used ex vivo c-Fos immunohistochemistry (e.g., Knapska et al. 2007) to generate a functional map of the neural circuits involved in the contextual retrieval of fear memory after extinction. Our results reveal reciprocal activity in prefrontal-amygdala circuits involved in extinction and renewal and implicate the hippocampus in hierarchical control of contextual memory retrieval within these circuits.  相似文献   

20.
Rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR) kinase, has attracted interest as a possible prophylactic for post-traumatic stress disorder (PTSD)-associated fear memories. We report here that although rapamycin (40 mg/kg, i.p.) disrupted the consolidation and reconsolidation of fear-potentiated startle paradigm to a shock-paired context, it did not disrupt startle increases to a 4-sec odor cue, even though post-training increases in amygdala mTOR activity were prevented by rapamycin (also 40 mg/kg, i.p.). Thus, while rapamycin may prove useful in retarding the development of some PTSD-associated memories, its relative ineffectiveness against cued fear memories may limit its clinical usefulness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号