首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, the possible role of nicotinic acetylcholine (nACh) receptors of the ventral tegmental area (VTA) on morphine-state-dependent learning was studied in adult male Wistar rats. As a model of memory, a step-through type passive avoidance task was used. All animals were bilaterally implanted with chronic cannulae in the VTA, trained using a 1 mA foot shock, and tested 24 h after training to measure step-through latency. Post-training subcutaneous (s.c.) injection of morphine (0.5–5 mg/kg) dose-dependently reduced the step-through latency, showing morphine-induced amnesia. Amnesia induced by post-training morphine was significantly reversed by pre-test administration of morphine (2.5–5 mg/kg, s.c.) and induced morphine-state-dependent learning. Pre-test injection of nicotine (0.25–1 μg/rat) into the VTA plus an ineffective dose of morphine (0.5 mg/kg) significantly restored the memory retrieval. It should be noted that pre-test intra-VTA injection of the same doses of nicotine (0.25–1 μg/rat) alone cannot affect memory retention. Furthermore, pre-test intra-VTA injection of the nicotinic acetylcholine receptor antagonist, mecamylamine (1–3 μg/rat) 5 min before the administration of morphine (5 mg/kg, s.c.) dose-dependently inhibited morphine-state-dependent learning. Pre-test injection of the higher dose of mecamylamine (3 μg/rat) into the VTA by itself decreased the step-through latency and induced amnesia. On the other hand, mecamylamine (0.5 and 1 μg/rat, intra-VTA) reversed the effect of nicotine on morphine response. The results indicate that nACh receptors in the VTA participate in the modulation of morphine-induced recovery of memory, on the test day.  相似文献   

2.
The interaction of opiate, cholinergic, glutamatergic and (possibly) dopaminergic inputs in the ventral tegmental area (VTA) influencing a learned behavior is certainly a topic of great interest. In the present study, the effect of intra-VTA administration of N-methyl-d-aspartate (NMDA) receptor agents on nicotine's effect in morphine state-dependent learning was investigated. An inhibitory avoidance (IA) task was used for memory assessment in male Wistar rats. Subcutaneous (s.c.) administration of morphine (5 and 7.5mg/kg) immediately after training decreased IA response on the test day, which was reinstated by pre-test administration of the same doses of the opioid; this is known as state-dependency. Moreover, pre-test administration of nicotine (0.2, 0.4 and 0.6 mg/kg, s.c.) also reversed the decrease in IA response because of post-training morphine (5mg/kg). Here, we also show that when infused into the VTA before testing, NMDA (0.01 and 0.1 microg/rat) reverse the post-training morphine effect on memory. In addition, the sub-effective doses of NMDA (0.0001 and 0.001 microg/rat) in combination with a low dose of nicotine (0.1mg/kg) which had no effects by themselves, synergistically improved retrieval of IA memory on the test day. In contrast, pre-test administration of a competitive NMDA receptor antagonist D-AP5 (0.5, 1 and 2 microg/rat) which had no effect alone prevented the nicotine reversal of morphine effect on memory. Our data indicate that NMDA receptors in the VTA are involved in the reversing effect of nicotine on morphine induced state-dependency.  相似文献   

3.
Despite its increasing use as an animal model of memory deficit in human dementia, relatively few studies have attempted to assess the memory processes involved in the anticholinergic-induced impairment of passive avoidance retention. In the present experiments, the influence of scopolamine administered prior to or immediately following training on 24-h retention of step-through passive avoidance was studied in NMRI mice. In low doses (0.3-3.0 mg/kg ip) pretraining administration (-5 min) of scopolamine induced a very strong amnesia. Post-training scopolamine induced a significant effect only at the highest dose tested (30 mg/kg). In a retention test of longer than normal duration (600 vs 180 s), which resulted in a more favorable comparison value in the control group, an intermediate post-training dose (10 mg/kg) induced a small effect which approached significance; a finding which may account for conflicting reports in the literature concerning the ability of scopolamine to induce a post-training deficit. The pretraining effect does not appear to have been solely the result of state-dependent learning; scopolamine (3 mg/kg) administered before both the training and test sessions induced a deficit of approximately the same magnitude as that found when administered before training or before testing only. The results indicate that scopolamine can induce a small post-trial effect, presumably through an influence on consolidation processes. The much larger effect of pretrial scopolamine, however, indicates a primary influence on processes related to information acquisition. Together with findings from the literature, the present experiments suggest that scopolamine-induced amnesia partially, but not completely, models the memory deficits of human dementia.  相似文献   

4.
Rats were trained and tested in habituation to a novel environment and step-down inhibitory avoidance. Immediately after training in each task the animals received intra-amygdala, intraseptal, or intrahippocampal micro-injections of agonists and antagonists of various neurotransmitter receptors. In the habitation task, intrahippocampal, but not intra-amygdala or intraseptal administration of the NMDA receptor antagonist aminophosphornopentanoic acid (AP5, 5.0 micrograms) or of the muscarinic receptor antagonist, scopolamine (2.0 micrograms) caused amnesia and the indirect antagonist of GABA-A receptors, picrotoxin (0.08 microgram), caused retrograde facilitation. Intrahippocampal administration of the respective agonists, glutamate, oxotremorine, and muscimol, had effects of their own opposite to those of the blockers, and norepinephrine (0.3 microgram) caused memory facilitation. In the avoidance task, results obtained with drug infusions given into the three structures were very similar: in all cases, AP5, scopolamine, and muscimol were amnestic, and glutamate, oxotremorine, norepinephrine, and picrotoxin caused memory facilitation. In addition, also in the three structures, picrotoxin counteracted the amnestic effect of AP5 and/or scopolamine and the beta-adrenoceptor blocker, timolol (0.3 microgram), while ineffective on its own, attenuated all the effects of picrotoxin. The results suggest that similar synaptic mechanisms in the amygdala, medial septum, and hippocampus are involved in memory consolidation: NMDA, muscarinic, and beta-noradrenergic receptors stimulate and GABA-A receptors inhibit this process, and beta-noradrenergic receptors modulate the GABAergic synapses. In the avoidance task these mechanisms operate in the three structures: in habituation only those in the hippocampus are operative. Possibly in each structure these mechanisms regulate, if not actually consolidate, a different aspect, component, or form of memory.  相似文献   

5.
Post-training introparitoneal (ip) administration of ACTH1-24 (25 ng/rat) or epinephrine HCl (625 ng/rat) facilitated retention of a step-down inhibitory avoidance task acquired using a small start platform (5-cm high, 25 X 7 cm) and a low intensity training footshock (0.3 mA, 60 Hz), and caused retrograde amnesia for a similar task acquired using a large platform (5-cm high, 25 X 25 cm) and a high intensity training footshock (0.8 mA, 60 Hz). The post-training intracerebroventricular (icv) administration of 5, 25, or 125 ng/rat of ACTH or of 5, 25, 125, 625, or 1250 ng/rat of epinephrine had no effect on retention of either task. These findings suggest that memory modulation by ACTH and epinephrine is mediated by reflexes initiated at peripheral receptors that affect brain activity during the post-training period.  相似文献   

6.
Previous findings indicate that the noradrenergic, dopaminergic, and cholinergic innervations of the basolateral amygdala (BLA) modulate memory consolidation. The current study investigated whether memory enhancement induced by post-training intra-BLA infusions of a beta-adrenergic or muscarinic cholinergic agonist requires concurrent activation of dopamine (DA) receptors in the BLA. Rats with implanted BLA cannulae were trained on an inhibitory avoidance (IA) task and, 48 h later, tested for retention. Infusions of the beta-adrenergic agonist clenbuterol into the right BLA, but not the left, enhanced retention, and concurrent infusions of the nonspecific DA receptor antagonist cis-Flupenthixol (Flu) blocked the enhancement. Post-training infusions of the muscarinic agonist oxotremorine into the right BLA also enhanced retention, and concurrent infusions of Flu blocked this effect. Additional experiments investigated whether memory modulation was lateralized to the right BLA. Post-training DA infusions into the right BLA, but not the left, enhanced retention. Post-training infusions of lidocaine or muscimol, which impair retention when infused bilaterally, had no effect when infused unilaterally into either the right or left BLA. These findings, together with earlier work, suggest that the dopaminergic system in the BLA is critically involved in memory modulation induced by noradrenergic and cholinergic influences. Additionally, these findings indicate that the enhancement, but not impairment, of memory consolidation is lateralized to the right BLA.  相似文献   

7.
A rapidly learned odor discrimination task based on spontaneous foraging behavior of the rat was used to evaluate the role of N-methyl-D-aspartate (NMDA) receptors (NMDARs) in ongoing memory consolidation. Rats were trained in a single session to discriminate among three odors, one of which was associated with palatable food reward. Previous experiments showed that the NMDAR antagonist DL-APV induced amnesia for this task when injected immediately after training. In the present study, memory was reactivated 24 h after training by exposure to the rewarded odor within the experimental context after which rats received an intracerebroventricular injection of APV. Combined reactivation-drug treatment induced profound amnesia when tested 48 h later. Animals receiving drug alone, in absence of reactivation, showed perfect retention. It is concluded that NMDARs support a consolidation process taking place after memory reactivation.  相似文献   

8.
Activation of N-methyl-d-aspartate (NMDA) receptors has been hypothesized to mediate certain forms of learning and memory. This hypothesis is based on the ability of competitive and uncompetitive NMDA receptor antagonists to disrupt learning. We investigated the effects of glycine site antagonists and partial agonists on deficits of acquisition (learning) and consolidation (memory) in a single trial inhibitory avoidance learning paradigm. Posttraining administration of either hypoxia (exposure to 7% oxygen) or the convulsant drug pentylenetetrazole (PTZ) (45 mg/kg) to mice impaired consolidation without producing neuronal cell death. Pretreatment with the competitive glycine antagonist 7-chlorokynurenic acid (7KYN) and the glycine partial agonists 1-aminocyclopropanecarboxylic acid (ACPC) and (+)HA-966 prevented memory deficits induced by hypoxia and PTZ, but did not affect scopolamine-induced learning impairment. In addition, ACPC prevented consolidation deficits evoked by a nonexcitotoxic concentration of l-trans-pyrrolidine-2, 4-dicarboxylate, a competitive inhibitor of glutamate transport that increases extracellular levels of glutamate. Moreover, (+)HA-966, 7KYN, and ACPC facilitated both acquisition and consolidation of inhibitory avoidance training, an effect that was dose-dependent and reversed by glycine. These results indicate that memory deficits induced by both hypoxia and PTZ involve NMDA receptor activation. Furthermore, the present findings demonstrate that glycine site antagonists and partial agonists prevent memory deficits of inhibitory avoidance learning by affecting consolidation, but not acquisition processes.  相似文献   

9.
The present study evaluated the possible role of α-adrenergic receptors of the dorsal hippocampus on scopolamine-induced amnesia and scopolamine state-dependent memory in adult male Wistar rats. The animals were bilaterally implanted with chronic cannulae in the CA1 regions of the dorsal hippocampus, trained in a step-through type inhibitory avoidance task, and tested 24 h after training to measure step-through latency. Results indicate that post-training or pre-test intra-CA1 administration of scopolamine (1 and 2 μg/rat) dose-dependently reduced the step-through latency, showing an amnestic response. Amnesia produced by post-training scopolamine (2 μg/rat) was reversed by pre-test administration of the scopolamine that is due to a state-dependent effect. Interestingly, pre-test intra-CA1 microinjection of α1-adrenergic agonist, phenylephrine (1 and 2 μg/rat) or α2-adrenergic agonist, clonidine improved post-training scopolamine (2 μg/rat)-induced retrieval impairment. Furthermore, pre-test intra-CA1 microinjection of phenylephrine (0.25, 0.5 and 1 μg/rat) or clonidine (0.25, 0.5 and 1 μg/rat) with an ineffective dose of scopolamine (0.25 μg/rat), synergistically improved memory performance impaired by post-training scopolamine. On the other hand, pre-test injection of α1-receptors antagonist prazosin (1 and 2 μg/rat) or α2-receptors antagonist yohimbine (1 and 2 μg/rat) prevented the restoration of memory by pre-test scopolamine. It is important to note that pre-test intra-CA1 administration of the same doses of prazosin or yohimbine, alone did not affect memory retrieval. These results suggest that α1- and α2-adrenergic receptors of the dorsal hippocampal CA1 regions may play an important role in scopolamine-induced amnesia and scopolamine state-dependent memory.  相似文献   

10.
The polyamines, spermine, spermidine, and putrescine, are a group of aliphatic amines that may act as physiological modulators of N-methyl-D-aspartate (NMDA) receptors. Although the modulatory role of polyamines in NMDA receptor function has long been known, the effects of polyamines on learning and memory only recently began to be unraveled. In the present study, we investigated the effect of bilateral infusions of spermidine (0.02-2 nmol), a polyamine agonist, into the CA1 region of the rat dorsal hippocampus on inhibitory avoidance learning 30 min pre-training, immediately post-training, 6 h post-training, or 10 min pre-test. Bilateral microinjections of 0.2 nmol spermidine prolonged step-down latencies compared to the respective control group when administered 30 min pre-training or immediately post-training. These results provide evidence that the modulatory effects of spermidine on the acquisition and/or early consolidation of memory of inhibitory avoidance tasks in the hippocampus occur within a limited time window.  相似文献   

11.
Previous findings indicate that the basolateral amygdala (BLA) and the nucleus accumbens (NAc) interact in influencing memory consolidation. The current study investigated whether this interaction requires concurrent dopamine (DA) receptor activation in both brain regions. Unilateral, right-side cannulae were implanted into the BLA and the ipsilateral NAc shell or core in male Sprague-Dawley rats ( approximately 300 g). One week later, the rats were trained on an inhibitory avoidance (IA) task and, 48 h later, they were tested for retention. Drugs were infused into the BLA and NAc shell or core immediately after training. Post-training intra-BLA infusions of DA enhanced retention, as assessed by latencies to enter the shock compartment on the retention test. Infusions of the general DA receptor antagonist cis-Flupenthixol (Flu) into the NAc shell (but not the core) blocked the memory enhancement induced by the BLA infusions of DA. In the reverse experiment, post-training intra-NAc shell infusions of DA enhanced retention and Flu infusions into the BLA blocked the enhancement. These findings indicate that BLA modulation of memory consolidation requires concurrent DA receptor activation in the NAc shell but not the core. Similarly, NAc shell modulation of memory consolidation requires concurrent DA receptor activation in the BLA. Together with previous findings, these results suggest that the dopaminergic innervation of the BLA and NAc shell is critically involved in the modulation of memory consolidation.  相似文献   

12.
Metabotropic glutamate receptor 5 (mGlu5) has been implicated in a variety of learning processes and is important for inhibitory avoidance and conditioned taste aversion learning. MGlu5 receptors are physically connected with NMDA receptors and they interact with, and modulate, the function of one another in several brain regions. The present studies used systemic co-administration of an mGlu5 receptor positive allosteric modulator, 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB) and an NMDA receptor antagonist dizocilpine maleate (MK-801) to characterize the interactions of these receptors in two aversive learning tasks. Male Sprague-Dawley rats were trained in a single-trial step-down inhibitory avoidance or conditioned taste aversion task. CDPPB (3 or 10mg/kg, s.c.), delivered by itself prior to the conditioning trial, did not have any effect on performance in either task 48 h after training. However, CDPPB (at 3mg/kg) attenuated the MK-801 (0.2mg/kg, i.p.) induced learning deficit in both tasks. CDPPB also reduced MK-801-induced hyperactivity. These results underlie the importance of mGlu5 and NMDA receptor interactions in modulating memory processing, and are consistent with findings showing the efficacy of positive allosteric modulators of mGlu5 receptors in reversing the negative effects of NMDA receptor antagonists on other behaviors such as stereotypy, sensorimotor gating, or working, spatial and recognition memory.  相似文献   

13.
The objective of the present study was to observe the effects of pre-training or post-training administration of dicyclomine, a M1 muscarinic antagonist, on inhibitory avoidance (IA) and contextual fear conditioning (CFC) and to investigate if the effects observed with the pre-training administration of dicyclomine are state-dependent. For each behavioral procedure (IA and CFC) groups of Wistar male rats were treated with saline or dicyclomine either 30 min before training (pre-training), immediately after training or 30 min before training/30 min before test (pre-training/pre-test). The animals were tested 24 h after training. The acquisition of IA and CFC was impaired by pre-training administration of dicyclomine. The consolidation of both tasks was not affected by dicyclomine given immediately after training. Pre-training/pre-test administration of dicyclomine impaired both tasks, an effect similar to that observed in the group which only received pre-training administration. Pre-test treatment induced dissociation between both tasks, impairing CFC retrieval, without interfering with the animals avoidance response. These results show that the dicyclomine did not affect IA and CFC consolidation, suggesting specific involvement of M1 muscarinic receptor only in acquisition these tasks, and these effects was not state-dependent. However, it is possible that the retrieval of these tasks may be mediated, at least in part, by different neurochemical mechanisms and may be dissociated by dicyclomine.  相似文献   

14.
Previous findings suggest that the rostral anterior cingulate cortex (rACC) is involved in memory for emotionally arousing training. There is also extensive evidence that the basolateral amygdala (BLA) modulates the consolidation of emotional arousing training experiences via interactions with other brain regions. The present experiments examined the effects of posttraining intra-rACC infusions of the cholinergic agonist oxotremorine (OXO) on inhibitory avoidance (IA) retention and investigated whether the BLA and rACC interact in enabling OXO effects on memory. In the first experiment, male Sprague-Dawley rats were implanted with bilateral cannulae above the rACC and given immediate posttraining OXO infusions. OXO (0.5 or 3 ng) induced significant enhancement of retention performance on a 48-h test. In the second experiment, unilateral posttraining OXO infusions (0.5, 3.0 or 10 ng) enhanced retention when infused into rACC, but not caudal ACC, consistent with previous evidence that ACC is composed of functionally distinct regions. A third experiment investigated the effects of posttraining intra-rACC OXO infusions (0.5 or 10 ng) in rats with bilateral sham or NMDA-induced lesions of the BLA. The BLA lesions did not impair IA retention, but blocked the enhancement induced by posttraining intra-rACC OXO infusions. Lastly, unilateral NMDA lesions of rACC blocked the enhancement of IA retention induced by posttraining ipsilateral OXO infusions into the BLA. These findings support the hypothesis that the rACC is involved in modulating the storage of emotional events and provide additional evidence that the BLA modulates memory consolidation through interactions with efferent brain regions, including the cortex.  相似文献   

15.
Interference with activity of numerous cerebral structures produces memory deficiencies; in many instances, however, when animals are over-trained such interference becomes innocuous. Systemic administration of protein synthesis inhibitors impairs long-term retention; this effect has been interpreted to mean that protein synthesis is required for memory consolidation, though little is known about the effect of protein synthesis inhibitors on memory of enhanced learning in the rat. To further analyze the protective effect of enhanced learning against amnesic treatments, groups of Wistar rats were trained in a one-trial step-through inhibitory avoidance task, using different intensities of foot-shock during training. Cycloheximide (CXM; 2.8 mg/kg), an inhibitor of protein synthesis, was injected either 30 min before training or immediately after training. Twenty-four hours after training retention latencies were recorded. Our data showed that both pre- and post-training administration of CXM produced amnesia in those groups that had been trained with relatively low foot-shock intensities, but no impairment in retention was observed when relatively high intensities of foot-shock were administered. These and similar results lead us to conclude that protein synthesis inhibitors may interfere with memory consolidation, but their effect disappears when animals are submitted to an enhanced learning experience, calling into question the idea that protein synthesis is required for memory consolidation.  相似文献   

16.
In this study, we analyzed the participation of the entorhinal cortex in extinction of a learned aversive response. Rats with infusion cannulae aimed to the entorhinal cortex were trained in a one-trial step-down inhibitory avoidance task (IA) and submitted to four consecutive daily test sessions without the footshock, a procedure that induced extinction of the conditioned response in control animals. When infused into the entorhinal cortex immediately after the first extinction session at doses able to block consolidation of IA memory, the NMDA receptor antagonist, AP5 (25 nmol/side), the inhibitor of protein synthesis anisomycin (300 nmol/side) and the inhibitor of CaMKII, KN-93 (10 nmol/side), but not the MEK1/2 inhibitor PD-98059 (5 nmol/side) hindered extinction of the IA response. The same results were obtained when the interval between the first and second test session was 48 instead of 24h. The data indicate that normal functionality of the NMDA receptors, together with CaMKII activity and protein synthesis are necessary in the entorhinal cortex at the time of the first test session to generate extinction. Our results also suggest that the ERK1/2 pathway does not play a role in this process.  相似文献   

17.
In day-old chicks trained on the one-trial taste-avoidance task, activation of NMDA receptors by glutamate is particularly important in the initial stages of memory consolidation. In addition, acetylcholine receptor activation has been shown to be a necessary component of memory formation for this task because injection of scopolamine produces amnesia. Memantine, a non-competitive NMDA receptor antagonist, improves memory formation under certain impairing circumstances, despite inhibiting the activation of NMDA receptors. The present experiments tested the hypothesis that memantine can ameliorate scopolamine-induced amnesia in day-old chicks (Gallus gallus domesticus) trained on the one-trial taste-avoidance task. Three experiments assessed the effects of scopolamine, memantine, and glutamate in this task. The results of Experiment 1 demonstrated that 50.0 mM scopolamine produces significant amnesia. In Experiment 2, 1.0 mM memantine reversed the scopolamine-induced amnesia, while other doses were ineffective. In Experiment 3, injection of 50.0 mM glutamate in combination with scopolamine reversed the memantine amelioration. These results indicate a relationship between glutamate and acetylcholine in memory formation in the day-old chick.  相似文献   

18.
We recently reported that blockade of dopamine (DA) D2 receptors attenuated deficits in long-term memory retrieval induced by a systemic injection of corticosterone, but the anatomical sites of such interaction were not known. In this study, we investigated whether the DA D2 receptors located in the medial prefrontal cortex (mPFC) may play a role in the impairing effects of glucocorticoids on the memory retrieval process. Young adult male rats were trained in a one trial inhibitory avoidance task (0.5 mA, 3s footshock). On the retention test given 48 h after training, the latency to re-enter the dark compartment and the time spent in light compartment of the apparatus were recorded. Systemically administered corticosterone (1mg/kg) given to rats 30 min before retention testing impaired their memory retrieval. Bilateral microinjections of the DA D2 receptor antagonist sulpiride (10 or 100 ng/0.5 microl per side) into the mPFC 30 min before corticosterone administration attenuated the glucocorticoid-induced impairment of memory retrieval. Furthermore, applied doses of sulpiride alone were ineffective in modulating memory retrieval. These findings indicate that D2 receptors located in the mPFC play an important role in mediating the impairing effects of glucocorticoids on memory retrieval.  相似文献   

19.
Pentylenetetrazol (PTZ, 45 mg/kg, ip) impaired retention of a one-trial step-through inhibitory avoidance task when injected into male Swiss mice 10 min after training, as indicated by retention performance 48 h later. The amnestic effect of PTZ was prevented by naltrexone (0.01 or 0.10 mg/kg, ip) administered after training, but prior to PTZ-treatment. On the contrary, neither naltrexone methyl bromide (0.01, 0.10, or 10.0 mg/kg, ip), a quaternarium analog of naltrexone, nor MR2266 (0.01 or 0.10 mg/kg, ip), a putative kappa opiate receptor antagonist, modified the behavioral effects of PTZ. On the other hand, the body seizures produced by PTZ were unaffected by any of the three opiate receptor antagonists that were given before the convulsant. Taken together, these results suggest that the effects of PTZ on retention are mediated, at least in part, by opioid peptides of central origin, and rules out a possible participation of opioid peptides derived from prodynorphin-precursor molecule. Administration of beta-endorphin (0.01 or 0.10 microgram/kg, ip) 10 min prior to testing attenuate the retrograde amnesia caused by PTZ. The effect of beta-endorphin was prevented by the simultaneous administration of naltrexone (0.10 mg/kg, ip) prior to testing. Naltrexone has no effect of its own upon retrieval. These results suggest that the impairment of retention induced by PTZ is probably due, at least in part, to a release of opioid peptides in the brain during the post-training period. PTZ given after training do not affect consolidation or memory storage, as mice thus treated may retrieve the learned information when they are submitted to an appropriate neurohumoral and/or hormonal state in the test session, that is, beta-endorphin injection. Therefore, the action of PTZ would be primarily at the level of the mechanism that make stored information available for late retrieval.  相似文献   

20.
In the present research the interaction between the endogenous ligand for the cannabinoid CB1 receptor anandamide (arachidonylethanolamide) and morphine in memory consolidation was investigated. Four sets of experiments were carried out with CD1 mice tested in a one-trial inhibitory avoidance task. The drugs were administered intraperitoneally after training of the animals in the apparatus. In the first set of experiments morphine (0.3 or 0.5, but not 0.15mg/kg) or anandamide (3 or 6 but not 1.5mg/kg) dose-dependently impaired memory consolidation. In the second set of experiments the administration of an otherwise ineffective dose of anandamide (1.5mg/kg) enhanced the memory impairment exerted by morphine (0.3 and 0.5mg/kg) when the drugs were injected immediately after training. In the third set of experiments the combined treatments of anandamide (1.5mg/kg) and morphine (0.5mg/kg) 2h after training were ineffective showing that the effects observed on performance following immediate posttraining administration of anandamide and morphine combinations were reflecting direct influences on memory consolidation. In the fourth set of experiments otherwise ineffective doses of the D1 DA receptor agonist SKF 38393 or the D2 DA receptor agonist LY 171555 antagonized the memory impairment produced by anandamide and morphine in combination, suggesting a possible involvement of dopaminergic mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号