首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The last decade has witnessed remarkable progress in the understanding of the mammalian cannabinoid system, from the cloning of the endogenous cannabinoid receptor to the discovery of new pharmacologic compounds acting on this receptor. Current and planned studies in humans include compounds with effects ranging from direct antagonists to inhibitors of reuptake and breakdown. This progress has been accompanied by a much greater understanding of the role of the cannabinoid system in modulating the neural circuitry that mediates anxiety and fear responses. This review focuses on the neural circuitry and pharmacology of the cannabinoid system as it relates to the acquisition, expression, and extinction of conditioned fear as a model of human anxiety. Preclinical studies suggest that these may provide important emerging targets for new treatments of anxiety disorders.  相似文献   

2.
We examined whether the cannabinoid receptor agonist WIN55,212-2 (WIN; 5 μg/side) microinjected into the hippocampus or the amygdala would differentially affect memory processes in a neutral vs. an aversive task. In the aversive contextual fear task, WIN into the basolateral amygdala impaired fear acquisition/consolidation, but not retrieval. In the ventral subiculum (vSub), WIN impaired fear retrieval. In the neutral social discrimination task, WIN into the vSub impaired both acquisition/consolidation and retrieval, whereas in the medial amygdala WIN impaired acquisition. The results suggest that cannabinoid signaling differentially affects memory in a task-, region-, and memory stage-dependent manner.  相似文献   

3.
When administered near the time of training, protein synthesis inhibitors such as anisomycin impair later memory. A common interpretation of these findings is that memory consolidation requires new protein synthesis initiated by training. However, recent findings support an alternative interpretation that abnormally large increases in neurotransmitter release after injections of anisomycin may be responsible for producing amnesia. In the present study, a local anesthetic was administered prior to anisomycin injections in an attempt to mitigate neurotransmitter actions and thereby attenuate the resulting amnesia. Rats received lidocaine and anisomycin injections into the amygdala 130 and 120 min, respectively, prior to inhibitory avoidance training. Memory tests 48 h later revealed that lidocaine attenuated anisomycin-induced amnesia. In other rats, in vivo microdialysis was performed at the site of amygdala infusion of lidocaine and anisomycin. As seen previously, anisomycin injections produced large increases in release of norepinephrine in the amygdala. Lidocaine attenuated the anisomycin-induced increase in release of norepinephrine but did not reverse anisomycin inhibition of protein synthesis, as assessed by c-Fos immunohistochemistry. These findings are consistent with past evidence suggesting that anisomycin causes amnesia by initiating abnormal release of neurotransmitters in response to the inhibition of protein synthesis.  相似文献   

4.
Previously, we found that in the lateral amygdala (LA) of the mouse, WIN55,212-2 decreases both glutamatergic and GABAergic synaptic transmission via activation of the cannabinoid receptor type 1 (CB1), yet produces an overall reduction of neuronal excitability. This suggests that the effects on excitatory transmission override those on inhibitory transmission. Here we show that CB1 activation by WIN55,212-2 and Delta(9)-THC inhibits long-term depression (LTD) of basal synaptic transmission in the LA, induced by low-frequency stimulation (LFS; 900 pulses/1 Hz). The CB1 agonist WIN55,212-2 blocked LTD via G(i/o) proteins, activation of inwardly rectifying K+ channels (K(ir)s), inhibition of the adenylate cyclase-protein kinase A (PKA) pathway, and PKA-dependent inhibition of voltage-gated N-type Ca2+ channels (N-type VGCCs). Interestingly, WIN55,212-2 effects on LTD were abolished in CB1 knock-out mice (CB1-KO), and in conditional mutants lacking CB1 expression only in GABAergic interneurons, but were still present in mutants lacking CB1 in principal forebrain neurons. LTD induction per se was unaffected by the CB1 antagonist SR141716A and was normally expressed in CB1-KO as well as in both conditional CB1 mutants. Our data demonstrate that activation of CB1 specifically located on GABAergic interneurons inhibits LTD in the LA. These findings suggest that CB1 expressed on either glutamatergic or GABAergic neurons play a differential role in the control of synaptic transmission and plasticity.  相似文献   

5.
The endogenous cannabinoid system has been shown recently to play a crucial role in the extinction of aversive memories. As the amygdala is presumably involved in this process, we investigated the effects of the cannabinoid receptor agonist WIN 55,212-2 (WIN-2) on synaptic transmission in the lateral amygdala (LA) of wild-type and cannabinoid receptor type 1 (CB1)-deficient mice. Extracellular field potential recordings and patch-clamp experiments were performed in an in vitro slice preparation. We found that WIN-2 reduces basal synaptic transmission and pharmacologically isolated AMPA receptor- and GABAA receptor-mediated postsynaptic currents in wild-type, but not in CB1-deficient mice. These results indicate that, in the LA, cannabinoids modulate both excitatory and inhibitory synaptic transmission via CB1. WIN-2-induced changes of paired-pulse ratio and of spontaneous and miniature postsynaptic currents suggest a presynaptic site of action. Inhibition of Gi/o proteins and blockade of voltage-dependent and G protein-gated inwardly rectifying K+ channels inhibited WIN-2 action on basal synaptic transmission. In contrast, modulation of the adenylyl cyclase-protein kinase A pathway, and blockade of presynaptic N- and P/Q- or of postsynaptic L- and R/T-type voltage-gated Ca2+ channels did not affect WIN-2 effects. Our results indicate that the mechanisms underlying cannabinoid action in the LA partly resemble those observed in the nucleus accumbens and differ from those described for the hippocampus.  相似文献   

6.
In the present study, we investigated the influence of bilateral intra-central amygdala (intra-CeA) microinjections of N-methyl-d-aspartate (NMDA) receptor agents on amnesia induced by a cannabinoid CB1 receptor agonist, arachydonilcyclopropylamide (ACPA). This study used a step-through inhibitory (passive) avoidance task to assess memory in adult male Wistar rats. The results showed that intra-CeA administration of ACPA (2 ng/rat) immediately after training decreased inhibitory avoidance (IA) memory consolidation as evidenced by a decrease in step-through latency on the test day, which was suggestive of drug-induced amnesia. Post-training intra-CeA microinjections of NMDA (0.0001, 0.001 and 0.01 μg/rat) did not affect IA memory consolidation. However co-administration of NMDA with ACPA (2 ng/rat) prevented the impairment of IA memory consolidation that was induced by ACPA. Although post-training intra-CeA administration of the NMDA receptor antagonist, d-(−)-2-amino-5-phosphonopentanoic acid (d-AP5; 0.01, 0.05 and 0.1 μg/rat) alone had no effect, its co-administration with an ineffective dose of ACPA (1 ng/rat) impaired IA memory consolidation. Post-training intra-CeA microinjection of an ineffective dose of d-AP5 (0.01 μg/rat) prevented an NMDA response to the impaired effect of ACPA. These results suggest that amnesia induced by intra-CeA administration of ACPA is at least partly mediated through an NMDA receptor mechanism in the Ce-A.  相似文献   

7.
Amygdala activity mediates the acquisition and consolidation of emotional experiences; we have recently shown that post-acquisition reactivation of this structure is necessary for the long-term storage of conditioned taste aversion (CTA). However, the specific neurotransmitters involved in such reactivation are not known. The aim of the present study was to investigate extracellular changes of glutamate, norepinephrine, and dopamine within the rat amygdala using in vivo microdialysis during the acquisition and 1-h post-acquisition of CTA paradigm. Microdialysis monitoring showed a significant norepinephrine increase related to novel taste exposure and a glutamate increase after gastric malaise induction by i.p. LiCl administration. Interestingly, we found a spontaneous concomitant increase of glutamate and norepinephrine, but not dopamine, 45 min after conditioning, suggesting the presence of aversive learning-dependent post-acquisition signals in the amygdala. These signals seem to be involved in CTA consolidation process, since post-trial blockade of N-methyl-D-aspartate or β-adrenergic receptors impaired long- but not short-term memory. These data suggest that CTA long-term storage involves post-acquisition release of glutamate and norepinephrine in the amygdala.  相似文献   

8.
In rats, amygdala benzodiazepine-like immunoreactivity decreases by 29% immediately after the animals step down from the platform of an inhibitory avoidance apparatus and decreases by a further 45% immediately after they receive a training footshock. The decrease is attributable to a release of diazepam or diazepam-like molecules. The immediate post-training intraamygdala injection of the central benzodiazepine antagonist flumazenil (10 nmole/amygdala) causes memory facilitation, and that of the GABA-A agonist muscimol (0.005 to 0.5 nmole) causes retrograde amnesia. Pretraining ip flumazenil administration (2.0 and 5.0 mg/kg) attenuates the effect of post-training muscimol by a factor of at least 100. The higher dose of pretraining flumazenil also causes memory facilitation. The data suggest that post-training consolidation is down-regulated by a GABA-A mechanism in the amygdala modulated by endogenous benzodiazepines released during training and at the time of consolidation.  相似文献   

9.
In insects, gamma-aminobutyric acid (GABA) and glutamate mediate fast inhibitory neurotransmission through ligand-gated chloride channel receptors. Both GABA and glutamate have been identified in the olfactory circuit of the honeybee. Here we investigated the role of inhibitory transmission mediated by GABA and glutamate-gated chloride channels (GluCls) in olfactory learning and memory in honeybees. We combined olfactory conditioning with injection of ivermectin, an agonist of GluCl receptors. We also injected a blocker of glutamate transporters (L-trans-PDC) or a GABA analog (TACA). We measured acquisition and retention 1, 24 and 48 h after the last acquisition trial. A low dose of ivermectin (0.01 ng/bee) impaired long-term olfactory memory (48 h) while a higher dose (0.05 ng/bee) had no effect. Double injections of ivermectin and L-trans-PDC or TACA had different effects on memory retention, depending on the doses and agents combined. When the low dose of ivermectin was injected after Ringer, long-term memory was again impaired (48 h). Such an effect was rescued by injection of both TACA and L-trans-PDC. A combination of the higher dose of ivermectin and TACA decreased retention at 48 h. We interpret these results as reflecting the involvement of both GluCl and GABA receptors in the impairment of olfactory long-term memory induced by ivermectin. These results illustrate the diversity of inhibitory transmission and its implication in long-term olfactory memory in honeybees.  相似文献   

10.
The melodic transformations of inversion, retrograde, and retrograde inversion occur in pieces of music. An important question is whether such manipulations of melodic material are perceptually accessible to the listener. This study used a short-term recognition-memory paradigm and found that in the easier conditions all these transformations were recognized with better than chance accuracy. The ascending order of difficulty was: inversion, retrograde, retrograde inversion. There was no evidence that listeners distinguish between transforms that preserve the exact interval relationships of the standard stimulus and those that merely preserve its contour (pattern of ups and downs). In view of the order of difficulty of the transforms, two theoretical explanations of performance are possible (1) Listeners may perform the mental transformation required by the recognition task on a representation of the vector of pitches in the standard—an operation that is very like transforming a mental image of the written notation. (2) Listeners may handle inversions differently from the other transformations, comparing the standard and the comparison contour element by contour element, in temporal order. In this view, the temporal dimension would appear to have precedence over the pitch dimension in the musical structure, in consideration of the consequences of disturbing it.  相似文献   

11.
Recent research on the cognitive dysfunctions experienced by human anmesic patients indicates that very long term (multidecade) changes may occur in memory.Flat retrograde amnesia (RA), consisting of a uniform memory deficit for information from all preamnesia time periods, indicates a simple, monolithic retrieval problem, whereasgraded RA, with greater memory deficits for information from recent as opposed to remote time periods, suggests the presence of a gradual long-term encoding, or consolidation, process. An evaluation of 247 outcomes from 61 articles provides strong evidence of graded RA across different cerebral injuries, materials, and test procedures, as well as in measures of both absolute and relative (patient vs. control) performance. Future conceptualizations of human memory should address the possibility that memories increase in resistance to forgetting, or reduction in trace fragility, across many decades.  相似文献   

12.
邓潇斐  郭建友 《心理科学进展》2018,26(11):1992-2002
精神分裂症是一种多发于青壮年的重性精神病, 其原因尚不明确。经典的多巴胺缺陷理论假说在某些方面欠缺解释力; 与此同时, 关于Parvalbumin阳性的中间神经元(后简称PV+神经元)缺陷在精神分裂症病理机制中的作用逐渐明晰, 并引起了越来越多的关注。PV+神经元在绝大部分脑区中是一种快速放电的抑制性神经元, 参与了突触可塑性的调节, 兴奋/抑制平衡的维持和神经发生等。而在精神分裂症中, PV+神经元的异常在患者和动物研究中都被普遍证实, 并发现与 NMDA受体缺陷、gamma波异常和氧化应激存在某些关联。  相似文献   

13.
Temporal lobe epilepsy (TLE) is often accompanied by interictal behavioral abnormalities, such as fear and memory impairment. To identify possible underlying substrates, we analyzed long-term synaptic plasticity in two relevant brain regions, the lateral amygdala (LA) and the CA1 region of the hippocampus, in the kindling model of epilepsy. Wistar rats were kindled through daily administration of brief electrical stimulations to the left basolateral nucleus of the amygdala. Field potential recordings were performed in slices obtained from kindled rats 48 h after the last induced seizure, and in slices from sham-implanted and nonimplanted controls. Kindling resulted in a significant impairment of long-term potentiation (LTP) in both the LA and the CA1, the magnitude of which was dependent on the number of prior stage V seizures. Saturation of CA1-LTP, assessed through repeated spaced delivery of high-frequency stimulation, occurred at lower levels in kindled compared to sham-implanted animals, consistent with the hypothesis of reduced capacity of further synaptic strengthening. Furthermore, theta pulse stimulation elicited long-term depression in the amygdala in nonimplanted and sham-implanted controls, whereas the same stimulation protocol stimulation caused LTP in kindled rats. In conclusion, kindling differentially affects the magnitude, saturation, and polarity of LTP in the CA1 and LA, respectively, most likely indicating an activity-dependent mechanism in the context of synaptic metaplasticity.  相似文献   

14.
Faces are one of the most significant social stimuli and the processes underlying face perception are at the intersection of cognition, affect, and motivation. Vision scientists have had a tremendous success of mapping the regions for perceptual analysis of faces in posterior cortex. Based on evidence from (a) single unit recording studies in monkeys and humans; (b) human functional localizer studies; and (c) meta-analyses of neuroimaging studies, I argue that faces automatically evoke responses not only in these regions but also in the amygdala. I also argue that (a) a key property of faces represented in the amygdala is their typicality; and (b) one of the functions of the amygdala is to bias attention to atypical faces, which are associated with higher uncertainty. This framework is consistent with a number of other amygdala findings not involving faces, suggesting a general account for the role of the amygdala in perception.  相似文献   

15.
16.
As a parallel to the dual decoding concept for processing of written language we proposed that phonological encoding does not necessarily occur in writing and that the phonemic and graphemic subsystems can be independent on the one-word level. This hypothesis was tested by comparing oral and written performance in a picture-naming task in Broca's and Wernicke's aphasics. In addition, the residual tacit knowledge of the orthographic properties of the names of the pictures was examined with a multiple-choice recognition task. The principal finding is that Broca's aphasics who were better in written than in oral naming showed more graphemically and semantically motivated errors than aphasics who were better in oral than in written naming, the latter producing more phonemically motivated errors. This result supports the dual encoding concept for writing on the singleword level, implying a direct route from the mental lexicon to the graphemic system in parallel with a route mediated by the phonemic system. Multiple-choice recognition was found to be superior to both oral and written performance in both Broca's and Wernicke's aphasics.  相似文献   

17.
Pessoa and colleagues recently reported the novel finding that objective awareness of a negative stimulus is associated with coactivation of the amygdala and fusiform gyrus. Based on the neuroanatomical connections of the amygdala, we suggest that the amygdala is acting to increase neural activity in the fusiform gyrus, thereby increasing the likelihood that visual representations that have affective value reach awareness. The psychological consequence is that a person's momentary affective state might help to select the contents of conscious experience.  相似文献   

18.
The amygdala and ventromedial prefrontal cortex in morality and psychopathy   总被引:12,自引:0,他引:12  
Recent work has implicated the amygdala and ventromedial prefrontal cortex in morality and, when dysfunctional, psychopathy. This model proposes that the amygdala, through stimulus-reinforcement learning, enables the association of actions that harm others with the aversive reinforcement of the victims' distress. Consequent information on reinforcement expectancy, fed forward to the ventromedial prefrontal cortex, can guide the healthy individual away from moral transgressions. In psychopathy, dysfunction in these structures means that care-based moral reasoning is compromised and the risk that antisocial behavior is used instrumentally to achieve goals is increased.  相似文献   

19.
20.
In 95 schizophrenic patients, 20 endogenous depressed patients and 39 control subjects the level of plasma tryptophan was determined after oral load of L-tryptophan (50 mg/kg) in range of 3 hours. Among the groups quantitative and specially qualitative differences were observed in course of tryptophan. In the group of schizophrenic patients it is possible to exactly differentiate a subgroup with similar psycho-pathological symptomatic by means the course of tryptophan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号