首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Driver distraction is one major cause of road traffic accidents. In order to avoid distraction-related accidents it is important to inhibit irrelevant stimuli and unnecessary responses to distractors and to focus on the driving task, especially when unpredictable critical events occur. Since inhibition is a cognitive function that develops until young adulthood and decreases with increasing age, young and older drivers should be more susceptible to distraction than middle-aged drivers. Using a driving simulation, the present study investigated effects of acoustic and visual distracting stimuli on responses to critical events (flashing up brake lights of a car ahead) in young, middle-aged, and older drivers. The task difficulty was varied in three conditions, in which distractors could either be ignored (perception-only), or required a simple response (detection) or a complex Go-/NoGo-response (discrimination). Response times and error rates to the critical event increased when a simultaneous reaction to the distractor was required. This distraction effect was most pronounced in the discrimination condition, in which the participants had to respond to some of the distracting stimuli and to inhibit responses to some other stimuli. Visual distractors had a stronger impact than acoustic ones. While middle-aged drivers managed distractor inhibition even in difficult tasks quite well (i.e., when responses to distracting stimuli had to be suppressed), response times of young and old drivers increased significantly, especially when distractor stimuli had to be ignored. The results demonstrate the high impact of distraction on driving performance in critical traffic situations and indicate a driving-related inhibition deficit in young and old drivers.  相似文献   

2.
Visual attention in driving with visual secondary task is compared for two visual secondary tasks. N = 40 subjects completed a 1 h test drive in a motion-base driving simulator. During the drive, participants either solved an externally paced, highly demanding visual task or a self paced menu system task. The secondary tasks were offered in defined critical and non-critical driving situations. Eye movement behavior was analyzed and compared for both tasks. Before starting the secondary tasks, eye movement behavior shows a smaller standard deviation of gaze as well as longer fixation durations for both tasks. The comparison between the two tasks indicates that drivers use the possibilities the self paced task offers: during the secondary task, they monitor the driving scene with longer fixations and show a greater standard deviation of gaze position. Furthermore, independently of the type of secondary task, drivers adapt their eye movement behavior to the demands of the situation. In critical driving situations they direct a larger proportion of glance time to the driving task. Last, the relation between glance behavior and collisions is analyzed. Results indicate that collisions go together with an inadequate distribution of attention during distraction. The results are interpreted regarding the attentional processes involved in driving with visual secondary tasks. Based on the similarities and differences between the two secondary tasks, a cognitive approach is developed which assumes that the control of attention during distraction is based on a mental situational model of the driving situation.  相似文献   

3.
Studies were conducted to assess driver acceptance of and trust in distraction mitigation strategies. Previous studies have shown that in-vehicle tasks undermine driver safety, and that there is a need for strategies to reduce the effects of in-vehicle distractions. Trust and acceptance of such strategies strongly influence their effectiveness. Different strategies intended to reduce distraction were categorized in a taxonomy. Focus groups were conducted to help refine this taxonomy and explore driver acceptance issues related to these strategies. A driving simulator experiment was then conducted using two of the strategies: an advising strategy that warns drivers of potential dangers and a locking strategy that prevents the driver from continuing a distracting task. These strategies were presented to 16 middle-aged and 12 older drivers in two modes (auditory, visual) with two levels of adaptation (true, false). Older drivers accepted and trusted the strategies more than middle-aged drivers. Regardless of age, all drivers preferred strategies that provided alerts in a visual mode rather than an auditory mode. When the system falsely adapted to the road situation, trust in the strategies declined. The findings show that display modality has a strong effect on driver acceptance and trust, and that older drivers are more trusting and accepting of distraction mitigation technology even when it operates imperfectly.  相似文献   

4.
The paper describes an experiment where anticipatory processes in the interaction with secondary tasks while driving could be explicitly identified and contrasted to control processes during the engagement in the secondary task. A special experimental set-up in a driving simulator environment was created that allows drivers to deliberately decide whether they want to be distracted or not depending on the driving situation and the expected development of that situation. As indicators for a situation-adaptive interaction with secondary tasks parameters from driving behaviour, secondary task performance and visual behaviour were analyzed. A study with 24 test drivers revealed that drivers are, in general, able to interact with a secondary task in a situation-aware manner. For example, drivers rejected more secondary tasks in already highly demanding situations or tried to delay the beginning of the task. During secondary task performance drivers observed the situational development with short control glances back to the road and adapted their speed. The analysis of driving errors revealed that rejecting a task in an already highly demanding driving situation is an effective strategy to maintain an adequate level of driving safety. However, some critical factors were identified that might hinder the driver from executing such strategies. Several recommendations for supporting the driver on this issue are given.  相似文献   

5.
As the impairment of older drivers is especially found in perception and attention, one could assume that they are especially prone to distraction effects of secondary tasks performed while driving. The aim of the study was to examine the effect of age on driving performance as well as the compensation strategies of older drivers under distraction. 10 middle-aged and 10 older drivers drove in a simulator with and without a secondary task. To assess driving performance the Lane Change Task (Mattes, 2003) was used. This method aims at estimating driver demand while a secondary task is being performed, by measuring performance degradation on a primary driving-like task in a standardized manner. The secondary task – a self-developed computer-based version of “d2 Test of Attention” was presented both with and without time pressure. The results show that older participants’ overall driving performance (mean deviation from an ideal path) was worse in all conditions as compared to the younger ones. With regard to lane change reaction time both age groups were influenced by distraction in a comparable manner. However, when the lane keeping performance (standard deviation of the lateral position) was examined, the older participants were more affected than the younger ones. This pattern could be explained by compensation strategies of the older drivers. They focused on the most relevant part of the driving task, the lane change manoeuvres and were able to maintain their performance level in a similar way as did younger drivers. The driving performance of the older participants was not additionally impaired when the secondary task imposed time pressure. Overall, subjective rating of driving performance, perceived workload and perceived distraction was found to be similar for both age groups. The observed trends and patterns associated with distraction while driving should contribute to the further research or practical work regarding in-vehicle technologies and older drivers.  相似文献   

6.
The purpose of this study was to evaluate the efficacy of a type of in-vehicle collision avoidance warning system (IVCAWS) under conditions of driver distraction. Forty-three participants responded to an imperfect warning system while simultaneously driving a simulator and performing a visual/cognitive task. The major concerns were whether drivers would be more inclined to rely on such a system when they are distracted by subsidiary tasks, and if this reliance would be counterproductive. We found that distracted drivers responded, by increasing their temporal headway, to the less reliable system’s alarms, but the warning system at the higher reliability levels led to over reliance and ultimately to maintaining shorter headways. This study has practical implications for the use of warning systems as driving aids for drivers. Although aids may be helpful and, in many cases, the more reliable aid is preferable, in the case of distraction, drivers may misuse the aid.  相似文献   

7.
Using a large data base of 20,725 questionnaires from 19 European countries, this article uses a combination of factor analysis and tree based regression to determine driver groups with homogeneous self-reported behavior and determine whether regional differences in driving behaviors exist. Self-reported behavior, including speeding, reckless driving, seat belt use, and drinking and driving are examined. The results suggest that speeding and general reckless (dangerous) behavior are related, perhaps capturing a driver's “risk taking” or “pre-trip violations” behavior. Similarly, seat belt use and driving under the influence of alcohol are also related and may represent a driver's “law abiding” tendency or “during-trip violations” behavior. Further, important regional differences and similarities between European drivers are uncovered. Northern European drivers report a significantly higher compliance with drinking and driving laws and seat belt use regulations than do Southern and Eastern European drivers.  相似文献   

8.
Driver distraction has become a major concern for transportation safety due to increasing use of infotainment systems in vehicles. To reduce safety risks, it is crucial to understand how fundamental aspects of distracting activities affect driver behavior at different levels of vehicle control. This study used a simulator-based experiment to assess the effects of visual, cognitive and simultaneous distraction on operational (braking, accelerating) and tactical (maneuvering) control of vehicles. Twenty drivers participated in the study and drove in lead-car following or passing scenarios under four distraction conditions: without distraction, with visual distraction, with cognitive distraction, and with simultaneous distraction. Results revealed higher perceived workload for passing than following. Simultaneous distraction was most demanding and also resulted in the greatest steering errors among distraction conditions during both driving tasks. During passing, drivers also appeared to slow down their responses to secondary distraction tasks as workload increased. Visual distraction was associated with more off-road glances (to an in-vehicle device) and resulted in high workload. Longer headway times were also observed under visual distraction, suggesting driver adaptation to the workload. Similarly, cognitive distraction also increased driver workload but this demand did not translate into steering errors as high as for visual distraction. In general, findings indicate that tactical control of a vehicle demands more workload than operational control. Visual and cognitive distractions both increase driver workload, but they influence vehicle control and gaze behavior in different ways.  相似文献   

9.
The present study investigates the impact of different sources of task complexity such as driving demands and secondary task demands on driver behaviour. Although much research has been dedicated to understanding the impact of secondary task demands or specific road traffic environments on driving performance, there is little information on how drivers adapt their behaviour to their combined presence. This paper aims to describe driver behaviour while negotiating different sources of task complexity, including mobile phone use while driving (i.e., calling and texting) and different road environments (i.e., straight segments, curves, hills, tunnels, and curves on hills). A driving simulator experiment was conducted to explore the effects of different road scenarios and different types of distraction while driving. The collected data was used to estimate driving behaviour through a Generalized Linear Mixed Model (GLMM) with repeated measures. The analysis was divided into two phases. Phase one aimed to evaluate driver performance under the presence and absence of pedestrians and oncoming traffic, different lanes width and different types of distraction. The second phase analysed driver behaviour when driving through different road geometries and lane widths and under different types of distraction. The results of the experiment indicated that drivers are likely to overcorrect position in the vehicle lane in the presence of pedestrians and oncoming traffic. The effect of road geometry on driver behaviour was found to be greater than the effect of mobile phone distraction. Curved roads and hills were found to influence preferred speeds and lateral position the most. The results of this investigation also show that drivers under visual-manual distraction had a higher standard deviation of speed and lateral position compared to the cognitive distraction and the non-distraction condition.  相似文献   

10.
One of the major challenges of designing an HMI for partially automated vehicles is the trade-off between a sufficient level of system information and avoidance of distracting the driver. This study aimed to investigate drivers’ glance behavior as an indicator of distraction when vehicle guidance is partially automated. Therefore, an on-road experiment was conducted comparing two versions of an in-vehicle display (during partially automated driving) and no display (during manual driving) on a heavy congested highway segment. The distribution of drivers’ total glance durations on the HMI showed that visual attention was shifted away from monitoring the central road scene towards looking at the in-vehicle display to a considerable extent. However, an analysis of the distribution of single glance durations supports the view that using partial automation and a respective HMI does not lead to a critical increase in distraction. Driving with a simplified version of the HMI had the potential to reduce glance duration on and thus potential distraction of the in-vehicle display.  相似文献   

11.
This study evaluated the power and sensitivity of several core driver workload measures in order to better understand their use as a component of future driver distraction potential evaluation procedures of the in-vehicle human machine interface (HMI). Driving is a task that requires visual, manual and cognitive resources to perform. Secondary tasks, such as mobile phone use and interaction with in-built navigation, which load onto any of these three processing resources increase driver workload and can lead to impaired driving. Because workload and distraction potential are interrelated, a comprehensive method to assess driver workload that produces valid and predictive results is needed to advance the science of distraction potential evaluation. It is also needed to incorporate into New Car Assessment Program (NCAP) testing regimes. Workload measures of cognitive (DRT [Detection Response Task] Reaction Time), visual (DRT Miss Rate), subjective (NASA-TLX [driver workload questionnaire]), and temporal demand (Task Interaction Time) were collected as participants drove one of 40 vehicles while completing a variety of secondary tasks with varying interaction requirements. Of the evaluated measures, variance and power analyses demonstrated that Task Interaction Time is the most sensitive in detecting differences in driver workload between different in-vehicle HMIs, followed by DRT Miss Rate, NASA-TLX and finally DRT Reaction Time. There were relatively weak correlations between each of the four measures. These results suggest that Task Interaction Time, coupled with a reliable visual demand metric such as DRT Miss Rate, eye glance coding, or visual occlusion, more efficiently detect differences in driver workload between different HMIs compared to DRT Reaction Time and the NASA-TLX questionnaire. These results can be used to improve the understanding of the utility of each of these core driver workload measures in assessing driver distraction potential.  相似文献   

12.
Distracted driving due to mobile phone use has been identified as a major contributor to accidents; therefore, it is required to develop ways for detecting driver distraction due to phone use. Though prior literature has documented various visual behavioural and physiological techniques to identify driver distraction, comparatively little is known about vehicle based performance features which can identify driver’s distracted state during phone conversation and texting while driving. Therefore, this study examined the effects of simple conversation, complex conversation, simple texting and complex texting tasks on vehicle based performance parameters such as standard deviation of lane positioning, number of lane excursions, mean and standard deviation of lateral acceleration, mean and standard deviation of steering wheel angle and steering reversal rates (for 1°, 5° and 10° angle differences). All these performance measures were collected for 100 licensed drivers, belonging to three age groups (young, mid-age and old age), with the help of a driving simulator. Effects of all the phone use conditions and driver demographics (age, gender and phone use habits) on the measures were analysed by repeated measures ANOVA tests. Results showed that 1°, 5° SRRs are able to identify all the distracted conditions except for simple conversation; while, 10° SSR can detect all the distracted conditions (including simple conversation). The results suggest that 10° SRR can be included in intelligent in-vehicle devices in order to detect distraction and alert drivers of their distracted state. This can prevent mobile phone use during driving and therefore can help in reducing the road accidents due to mobile phone distractions.  相似文献   

13.
ABSTRACT

Perceptual load theory of attention predicts that the level of perceptual load in a primary task affects the processing of additional stimuli. Given the lack of ecologically valid evidence for the model, the current study assessed the effect of perceptual load on driver awareness during simulated driving tasks. The results showed that perceptual load dramatically affected driver awareness for visual and auditory stimuli, even those that were driving relevant and safety critical (e.g. pedestrians or the sound of a car horn). The results support load theory and suggest that perceptual load may be an important factor in driver safety.  相似文献   

14.
This paper presents recent research into compliance with current driving hours regulations, the effectiveness of using driving hours to predict fatigue, and alternative compliance and enforcement options. The paper describes results of a major survey of truck driver fatigue in New Zealand, a review of international compliance and enforcement procedures, and research focussing on the social forces and influences that affect truck drivers. The survey of truck drivers was based on interviews and performance tests collected from 600 truck drivers at depots, wharves, markets, and other locations throughout the North Island of New Zealand. The interviews included: questions on driver demographic and work/rest patterns, drivers' attitudes towards fatigue, propensity towards daytime sleepiness, and a self-assessment of the driver's momentary level of fatigue. In addition, a simulator-based performance test of driving was undertaken. The performance test included a combination of a standard driving task, a dual-axis sub-critical tracking task (maintaining speed and steering in a controlled but unstable environment, a virtual roadway affected by the appearance of random wind gusts requiring steering correction), and a tertiary or side-task requiring driver monitoring and periodic responses. The initial results from the first 100 drivers have found a sizable number of drivers exceeding the allowable driving hours, high levels of fatigue and sleepiness, and interesting differences between line-haul and local delivery drivers. A related research project into the social processes and relationships that affect truck drivers has resulted in a good understanding of the social conditions that influence cultural change and the actions of truck drivers and fleet managers. In this paper we will have particular regard to these processes in the construction of ideas concerning safety. This includes an understanding of the role of major stakeholders, such as freight forwarders and the enforcement agencies with respect to drivers and their conditions, actions and understanding of the road transport industry. This knowledge coupled with the survey results and an understanding of compliance and enforcement alternatives will be used to explore potential fatigue management options.  相似文献   

15.
Cognitive load from secondary tasks is a source of distraction causing injuries and fatalities on the roadway. The Detection Response Task (DRT) is an international standard for assessing cognitive load on drivers’ attention that can be performed as a secondary task with little to no measurable effect on the primary driving task. We investigated whether decrements in DRT performance were related to the rate of information processing, levels of response caution, or the non-decision processing of drivers. We had pairs of participants take part in the DRT while performing a simulated driving task, manipulated cognitive load via the conversation between driver and passenger, and observed associated slowing in DRT response time. Fits of the single-bound diffusion model indicated that slowing was mediated by an increase in response caution. We propose the novel hypothesis that, rather than the DRT’s sensitivity to cognitive load being a direct result of a loss of information processing capacity to other tasks, it is an indirect result of a general tendency to be more cautious when making responses in more demanding situations.  相似文献   

16.
Distraction is a common cause of accidents (e.g. NHTSA, 2009), and different distraction conditions influence the driving behaviour in a specific way. Despite a lot of research in this area, most studies concentrate on perception errors as a result of visual distraction. The effects of different distraction conditions on higher cognitive processes are still unclear. The fact that accidents happen even if the drivers perceive all relevant information implies that cognitive factors contribute to accidents, too. For this reason, this study was conducted to investigate how different distraction conditions influence the anticipation of events in a car–following scenario. Anticipation is required to know what will happen next, and to react adequately to the situation. In a driving simulator, scenarios with different manoeuvres of a preceding car were created to generate various anticipations and therefore a different adaptation of the driving behaviour. Additionally, a cognitive and a visual secondary task were introduced. The question was in which way either a cognitive or visual distraction influences the generation of anticipations and the construction of an appropriate situation model.The results indicate that in the phase when the preceding car showed braking manoeuvres, drivers prolonged their safety distance only when being visually distracted which is probably done to compensate for this visual distraction. This compensation ensued to some extent in the second phase where the preceding cars drove with a constant speed. Additionally, drivers who were visually distracted went somewhat slower when the car in front had braked in phase one. Thus, the drivers seemed to anticipate that the car might brake again and adapted their speed accordingly. This was not found in drivers with cognitive distraction. Thus, cognitive distraction seems to disturb this anticipation.Finally, at an intersection, drivers with visual distraction had a smaller TTC and a higher velocity when the car in front made an unexpected turn. Thus, the impairment of perception due to the visual distraction leads to a slower reaction as compared to a cognitive distraction. Overall, cognitive distraction influences the anticipation of possible future actions of other car drivers negatively while visual distraction deteriorates perception and thus the reaction to critical, sudden events. Thus, different intervention strategies are required to prevent these kinds of accidents.  相似文献   

17.
Drivers engage in a host of driving-unrelated tasks while on the road. They listen to music, sing-along, and accompany songs by pounding-out drum-kicks and syncopated rhythms on the steering wheel. However, there is controversy over in-cabin music: Does background music facilitate driver performance via increased arousal leading to more focused concentration, or cause distraction placing drivers at greater risk. In an effort to shed light on the debate, the current study evaluated music engagement by employing Music Performance Analyses with audio recordings from three simulated driving conditions. The results indicate that as the perceptual demands of the primary driving task increased, the secondary music activity was hampered, and subsequently sub-optimal vocal and percussive performances were demonstrated consisting of intonation errors, rhythmic inaccuracy, lack of synchrony, inconsistent and unstable temporal flow, neglect of text, and lyric replacement. The findings seem to point out that drivers allocate greater reserves to music than previously considered, and as drivers do not withdraw altogether from music engagement under high-demand driving conditions, driving may be under-resourced. Exploring active music engagement while driving might assist traffic safety researchers in decoding the effects of In-Car Music on driver behavior.  相似文献   

18.
In recent years, the number and complexity of in-vehicle infotainment systems has been steadily increasing. While these systems certainly improve the driving experience, they also increase the risk for driver distraction. International standards and guidelines provide methods of measuring this distraction along with test criteria that help automakers decide whether an interface task is too distracting to be used while driving. Any specific function failing this test should therefore be locked out for use by the driver. This study implemented and tested a dynamic approach to this blocking by algorithmically reacting to driver inputs and the pace of the interaction in order to prevent drivers from having prolonged or too intense sequences of in-vehicle interactions not directly related to driving. Three simulated driving experiments in Germany and the United States were conducted to evaluate this dynamic function blocking concept and also cater for differences in the status quo of either no blocking or static blocking. The experiments consisted of a car following scenario with various secondary interface tasks and always included a baseline condition where no blocking occurred as well as an implementation of the dynamic function blocking. While Experiments 1 and 3 were aimed at collecting and analyzing gaze and driving data from more than 20 participants, Experiment 2 focused on the user experience evaluation of different visual feedback implementations from 13 participants. The user experience as rated by these participants increased throughout the course of all three studies and helped further improve both the concept and feedback design. In the experiments the total glance time towards the road was significantly higher in the dynamic function blocking condition compared to the baseline, already accounting for the increase in total task time inherent to the dynamic condition. Participants developed two strategies of interacting with the dynamic function blocking. They either operated at their normal baseline speed and incurred task blockings or operated slower to avoid the blockings. In the latter strategy, participants chunked their interactions into smaller steps with the present data suggesting that they used the pauses in between chunks to look back onto the road ahead. Theoretical and practical implications of this first evaluation of a dynamic function blocking concept are discussed.  相似文献   

19.
Route familiarity affects a driver’s mental state and indirectly affects traffic safety; however, this important factor is easily overlooked. Previous research on route familiarity has only analysed psychological states in terms of unfamiliarity and familiarity, the influence of driving behaviour and driving environment on psychological states has been ignored. As a result, the mechanisms through which the route familiarity influence driver psychological states, and vice versa, are unclear. This study proposes a quantitative framework for studying driver psychological condition and route familiarity using experimental data from a real driving task and driving environment data. The experimental data included 1022 observations obtained by 23 participants over 7 consecutive trials on 6 unfamiliar experimental routes with large differences in scenarios; environmental data were automatically extracted after segmenting a driving video through the Dilated Residual NetWorks model. The results reveal that (1) the relationship between the driver’s psychological condition and route familiarity is not monotonic and is different for straight and turning sections; (2) the driver’s psychological condition is influenced by the visual scene elements and the type of road section, and the results of the multivariate regression analysis quantified the variability of the influence; and (3) unlike a majority of findings on distracted driving, our study suggest that the driver’s attention to the external environment in the urban distracted driving state will gradually approach a ‘distraction threshold’, and the time and size of the ‘distraction threshold’ are influenced by the driver. This study can further the development of urban traffic safety research and help urban designers plan and improve urban landscapes to ensure drivers maintain stable mental states when they drive.  相似文献   

20.
Driver distraction is a major cause of road crashes and has a great influence on road safety. In vehicles, one of the common distracting sources is navigation systems (NSs). The navigation system (NS) can distract the driver due to following directions and reading the provided information through its display. These tasks take the driver’s attention from the primary task of driving and may cause poor driving performance, increasing the risk of crashes. In this paper, the effect of the environment (i.e., urban areas and rural areas), the navigation system display (NSD) size, environmental illumination, and gender on young drivers between the ages of 18 and 29 years mental workload was investigated using a simulated driving experiment. To evaluate each driving condition, the NASA-TLX (NASA Task Load Index) workload assessment tool, and a distraction evaluation element, were introduced and used to assess the overall workload, the workload subscales and the distraction by the NSD. The assessment showed a higher perceived overall workload for urban areas and night driving as compared to a rural areas and daytime driving. Moreover, the results showed a greater perceived distraction by the NSD in urban areas compared to driving in rural areas. The subjects also felt distracted when using the small NS compared to using the large NS. The study concluded that urban areas driving, and night driving creates higher perceived workload than rural areas and daytime driving. Furthermore, small NSD leads to more perceived distraction than large NSD while driving. The NSD designers may utilize this research findings to optimize NSD designs to improve driving safety, performance and comfort. Moreover, this study contributes to our understanding of the effect of the NSD size on driving workload and distraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号