首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Twenty two male subjects each performed five climbing trials of a portable straight ladder. Each subject was instructed to ascend the ladder at a “comfortable” pace using only the rungs for support. For the first, third and fifth trials, the temporal and movement characteristics of the performances were recorded using capacitive touch sensors mounted on each of the rungs and high-speed cinematographical techniques. The results revealed little evidence to suggest a preferred climbing gait. The two most commonly utilized methods of ascent for all trials were the lateral and four-beat lateral gaits. Only 31.8% of the subjects adopted the same gait pattern during each of the three trials. The temporal characteristics of each gait pattern showed a relatively longer time for each segment contact phase than for the corresponding airborne phase. The shortest average period was found for the four-beat diagonal gait followed, in order, by the lateral, diagonal and four beat lateral gaits. Variability measures assumed the same ranking in reverse order with the four-beat diagonal gait producing the most variable period times.  相似文献   

2.
The kinematics of stair climbing were examined to test the assertion that relative timing is an invariant feature of human gait. Six male and four female subjects were video-recorded (at 60 Hz) while they climbed a flight of stairs 10 times at each of three speeds. Each gait cycle was divided into three segments by the maximum and minimum angular displacement of the left knee and left foot contact. Gentner's (1987) analysis methods were applied to the individual subject data to determine whether the duration of the segments remained a fixed proportion of gait cycle duration across changes in stair-climbing speed. A similar analysis was performed using knee velocity maxima to partition the gait cycle. Regardless of how the gait cycle was divided, relative timing was not found to remain strictly invariant across changes in speed. This conclusion is contrary to previous studies of relative timing that involved less conservative analysis but is consistent with the wider gait literature. Strict invariant relative timing may not be a fundamental feature of movement kinematics.  相似文献   

3.
This study examined the effect of ageing on the swing phase mechanics of young and elderly gait. Sagittal plane marker trajectories and force plate data were collected while 10 young (24.9+/-0.9 years) and eight elderly (68.9+/-0.4 years) subjects walked at their preferred walking speeds. Comparison between young and elderly gait was made for a range of spatial-temporal, kinematic and kinetic variables with emphasis given to identifying possible differences at toe-off, minimum metatarsal-phalangeal joint clearance and heel contact. In order to control for the confounding effect of gait velocity on the dependent variables, a multivariate analysis of covariance was used to identify differences between the young and elderly subjects due to age. In contrast to studies that have reported lower preferred walking speeds in the elderly compared to the young [J.O. Judge, R.B. Davis III, S. Ounpuu, Step length reductions in advanced age: the role of ankle and hip kinetics, Journal of Gerontology: Medical Sciences 51 (1996) M303-312; D.C. Kerrigan, M.K. Todd, U. Della Croce, L.A. Lipsitz, J.J. Collins, Biomechanical gait alterations independent of speed in the healthy elderly: evidence for specific limiting impairments, Archives of Physical and Medical Rehabilitation 79 (1998) 317-322], no differences in walking speed nor in the spatial-temporal variables that determine walking speed were detected. The elderly were however, found to have a greater hip extension moment at the time of minimum metatarsal-phalangeal joint clearance, and a significantly higher anterior-posterior velocity heel contact velocity that was linked to a significantly higher shank and foot angular velocity at heel contact. Since many gait variables are highly correlated with walking speed [C. Kirtley, M.W. Whittle, R.J. Jefferson, Influence of walking speed on gait parameters, Journal of Biomechanical Engineering 7 (1985) 282-288; D.A. Winter, Biomechanical motor patterns in normal walking, Journal of Motor Behaviour 15 (1983) 302-330], differences between young and elderly gait found in the present study may therefore be attributed to ageing, rather than a secondary effect of differences in gait velocity.  相似文献   

4.
Foot progression angle adjustment was shown to reduce external knee adduction moment (EKAM) and knee adduction angular impulse (KAAI) during level ground walking. However, evidence on effects of foot progression angle adjustment on the above surrogate measures of medial knee loading during stair climbing is limited. Hence, this study examined the effects of toe-in and toe-out gait on EKAM and KAAI during stair ascent and descent. Kinematic and kinetic data were collected from thirty-two healthy adults during stair ascent and descent with toe-in, toe-out and natural gait. A repeated measures ANOVA indicated that toe-in gait significantly reduced the first EKAM peak (P < 0.001) and KAAI (P = 0.002), while toe-out gait significantly increased the first (P < 0.001) and second (P = 0.04) EKAM peaks and KAAI (P < 0.001) when compared with natural gait during stair ascent. During stair descent, toe-in gait significantly reduced the first (P < 0.001) and second (P = 0.032) EKAM peaks and KAAI (P < 0.001), whilst toe-out gait significantly increased the first EKAM peak (P = 0.022) and KAAI (P = 0.028) when compared with natural gait. In conclusion, toe-in gait was found to be a viable strategy in reducing medial knee loading during stair climbing.  相似文献   

5.
The authors investigated the effect of an auditory cue on the choice of the initial swing leg in gait initiation. Healthy humans initiated a gait in response to a monaural or binaural auditory cue. When the auditory cue was given in the ear ipsilateral to the preferred leg side, the participants consistently initiated their gait with the preferred leg. In the session in which the side of the monaural auditory cue was altered trial by trial randomly, the probability of initiating the gait with the nonpreferred leg increased when the auditory cue was given in the ear contralateral to the preferred leg side. The probability of choosing the nonpreferred leg did not increase significantly when the auditory cue was given in the ear contralateral to the preferred leg side in the session in which the auditory cue was constantly given in the ear contralateral to the preferred leg side. The reaction time of anticipatory postural adjustment was shortened, but the probability of choosing the nonpreferred leg was not significantly increased when the gait was initiated in response to a binaural auditory cue. An auditory cue in the ear contralateral to the preferred leg side weakens the preference for choosing the preferred leg as the initial swing leg in gait initiation when the side of the auditory cue is unpredictable.  相似文献   

6.
The purpose of the present study was to search for common patterns and for differences in climbing strategies in a group of recreational climbers. Twelve participants were involved in the study. Each participant climbed a simple indoor route consisting of a 3m horizontal shift followed by a 3m ascent for five times. Climbers could choose their own style, their preferred speed and holds. Their motion was recorded through motion capture based on passive markers. Results suggested that two main climbing strategies were used: the first preferring agility over force and the second preferring force over agility. We also found that our best climbers tried to minimize power during all trials.  相似文献   

7.
Our ability of perceive the identity and naturalness of a human gait is examined in a series of four experiments involving computer-animated stick figures. The results indicate that the perceived naturalness of a walking or running gait can be influenced by the motion of any limb segment, but the perceived identity of these gaits is primarily determined by the movements of the lower leg (i.e., the tibia). The results also demonstrate that a perceptually salient walking gait can be transformed into running (or vice versa) by adding or subtracting a constant value to the angle of the lower leg over the entire step cycle. The size of this constant value is affected by the shape of the lower leg angle function and the motion of other limb segments.  相似文献   

8.
Most human gait forms assume symmetrical, alternating patterns of interlimb coordination (e.g., crawling, walking, running). Human galloping is a notable exception. In contrast to extensive information on galloping in animals, little is known about this gait in humans. Therefore, kinematic and topographical analyses of running and galloping were undertaken to investigate the manner in which the lower limbs are uncoupled to produce this asymmetrical gait. Seven adult females were filmed while running and galloping at their preferred speed. Analysis of the gaits revealed differences in the following: (a) preferred speed, (b) coupling between upper- and lower-limb girdles, and (c) point of foot fall (end-point trajectories). In contrast to clear differences in interlimb coordination, intralimb coordination was remarkably similar across gaits, although when galloping was adopted, the rear leg did show more variable change than the front leg.  相似文献   

9.
Walking with dropped foot represents a major gait disorder, which is observed in hemiparetic persons after stroke. This study explores the use of support vector machine (SVMs) to classify different walking conditions for hemiparetic subjects. Seven participants with dropped foot (category 4 of functional ambulatory category) walked in five different conditions: level ground, stair ascent, stair descent, upslope, and downslope. The kinematic data were measured by two portable sensor units, each comprising an accelerometer and gyroscope attached to the lower limb on the shank and foot segments. The overall classification accuracy of stair ascent, stair descent, and other walking conditions was 92.9% using input features from the sensor attached to the shank. It was further improved to 97.5% by adding two more inputs from the sensor attached to the foot. Stair ascent was also classified by the inputs from the foot sensor unit with 96% accuracy. The performance of an SVM was shown to be superior to that of other machine learning methods using artificial neural networks (ANN) and radial basis function neural networks (RBF). The results suggested that the SVM classification method could be applied as a tool for pathological gait analysis, pattern recognition, control signals in functional electrical stimulation (FES) and rehabilitation robot, as well as activity monitoring during rehabilitation of daily activities.  相似文献   

10.
The authors' aim was to investigate gait asymmetry of crossing step during obstacle avoidance while walking in people with Parkinson's disease (PD) under and without the effects of dopaminergic medication. Thirteen individuals with PD and 13 neurologically healthy individuals performed 5 trials of unobstructed gait and 10 trials of obstacle crossing during gait (5 trials with each leg) and spatiotemporal parameters were analyzed. Obstacle crossing increased step duration of the crossing step for the most-affected or nondominant limb compared to the crossing step with the least-affected or dominant limb. Individuals with PD without the effects of medication increased step duration for the step with the least-affected limb compared to the step with the most-affected limb during obstacle crossing.  相似文献   

11.
This article contrasts the mechanical energy profiles of asymmetrical galloping with those of symmetrical running in adult humans. Seven female subjects were filmed while performing overground running and galloping at their preferred velocities. A previous study (Whitall & Caldwell, 1992) showed that kinematic differences between these gait modes included higher preferred velocity for running than galloping, with distinct differences in interlimb coordination but surprisingly similar intralimb patterns. Energetically, in the present study the whole body center of mass during galloping was found to behave much as it does in walking; kinetic and potential energy profiles were out of phase, as compared with running, which exhibited in-phase fluctuations of kinetic and potential energies. The primary reason for these center of mass differences was found in the energetics of the back leg of galloping, which demonstrated alterations in timing of its energy fluctuations and less energy generation than the front leg. Analysis of the power sources underlying the segmental energies during swing phase showed that the back leg's energy changes were accomplished mainly through reduced use of the hip muscles and less interlimb energy transfer. The back leg's energetics during swing also displayed a shift toward greater reliance on nonmuscular energy sources. A pattern of energy inflow during early swing and energy outflow during late swing was common to both running and galloping, although the galloping legs both demonstrated more abrupt transitions between these phases. The possibility is raised that the 67/33 interlimb phasing ratio used in galloping is selected to reduce mechanical energy variations of the total body center of mass. These data suggest that models of asymmetric gait in humans must account for more than merely phase alteration.  相似文献   

12.
BackgroundWith increases in life expectancy, it is important to understand the influence of aging on gait, given that this activity is related to the independence of older adults and may help in the development of health strategies that encourage successful aging in all phases of this process.Research questionTo compare gait parameters with usual and fast speeds for independent and autonomous older adults throughout the aging process (60 to 102 years old), and also to identify which of the gait variables are best for identifying differences across the different age groups.MethodsTwo hundred older adults aged between 60 and 102 years were evaluated. The sample was divided into 3 age groups: 60 to 79 years, 80 to 89 years and 90 years and over. The analyzed gait variables were: speed (meters/s), cadence (steps/min), stride time (seconds), step length (centimeters), double support (percentage of the gait cycle), swing (percentage of the gait cycle), step length variability (CoV%) and stride time variability (CoV%).ResultsGroup comparison regarding usual gait and fast gait revealed a significant difference in all gait variables. In addition, it can be seen that variables such as gait speed and step length showed greater effect sizes in intergroup comparison (usual gait: 0.48 and 0.47; fast gait: 0.36 and 0.40; respectively), possibly showing that these variables can better detect the changes observed with increasing age.ConclusionThere are differences in the gait performance of older adults from different age groups for usual and fast gait speeds, which is more evident regarding gait speed and step length variables. We recommend the use of usual gait for the identification of the effects of aging because, besides showing a higher effect size values it is more comfortable and requires less effort from older subjects.  相似文献   

13.
The purpose of this study was to explore the extent of multifractality in unperturbed and constrained locomotion, and to determine if multifractality predicted gait adaptability. Young, healthy participants (n?=?15) walked at preferred and slow speeds, as well as asymmetrically (one leg at half speed) on a split-belt treadmill. Stride time multifractality was assessed via local detrended fluctuation analysis, which evaluates the evolution of fluctuations both spatially and temporally. Unperturbed walking exhibited monofractal behavior. Asymmetric walking displayed greater multifractality in the faster moving limb, indicating more intermittent periods of extreme high or low variance. Multifractality was not associated with adaptation to asymmetric walking. These findings further suggest that unperturbed locomotion is monofractal and establish that perturbed walking yields multifractal behavior.  相似文献   

14.
During gait acquisition, children learn to use their changing resources to meet the requirements of the task. Compared to typically developing toddlers (TD), toddlers with Down syndrome (DS) have functionally different musculoskeletal characteristics, such as hypotonia, and joint and ligament laxity, that could produce a reduced passive stiffness. The interplay between this inherently lower passive stiffness and the demands of walking may result in different strategies during gait acquisition. This study compared normalized global stiffness and lower limb's co-contraction indices (CCI) used by toddlers with TD (n=12) and with DS (n=12), during the early stages of gait acquisition. Stiffness and CCI were normalized by gravitational torque (mLg) in both phases of gait (stance, swing). Five longitudinal evaluations were conducted from the onset of locomotion until three months post-acquisition. All children were video taped and had electromyographic (EMG) recordings from muscle pairs of one leg, which were used to calculate CCI of hip, knee, ankle, and total leg CCI. Body and lower limb stiffness were calculated according to a hybrid pendulum resonance equation. Results from ANOVAs revealed no group differences on stiffness or on CCI's during stance but children with DS showed greater CCI during swing. Despite the structural musculoskeletal differences between toddlers with TD and with DS, the similarities observed in their processes of gait development suggest functional equivalences.  相似文献   

15.
A major characteristic of hemiplegic gait observed in individuals post-stroke is spatial and temporal asymmetry, which may increase energy expenditure and the risk of falls. The purpose of this study was to examine the effects of swing resistance/assistance applied to the affected leg on gait symmetry in individuals post-stroke. We recruited 10 subjects with chronic stroke who demonstrated a shorter step length with their affected leg in comparison to the non-affected leg during walking. They participated in two test sessions for swing resistance and swing assistance, respectively. During the adaptation period, subjects counteracted the step length deviation caused by the applied swing resistance force, resulting in an aftereffect consisting of improved step length symmetry during the post-adaptation period. In contrast, subjects did not counteract step length deviation caused by swing assistance during adaptation period and produced no aftereffect during the post-adaptation period. Locomotor training with swing resistance applied to the affected leg may improve step length symmetry through error-based learning. Swing assistance reduces errors in step length during stepping; however, it is unclear whether this approach would improve step length symmetry. Results from this study may be used to develop training paradigms for improving gait symmetry of stroke survivors.  相似文献   

16.
Gait data are typically collected in multivariate form, so some multivariate analysis is often used to understand interrelationships between observed data. Principal Component Analysis (PCA), a data reduction technique for correlated multivariate data, has been widely applied by gait analysts to investigate patterns of association in gait waveform data (e.g., interrelationships between joint angle waveforms from different subjects and/or joints). Despite its widespread use in gait analysis, PCA is for two-mode data, whereas gait data are often collected in higher-mode form. In this paper, we present the benefits of analyzing gait data via Parallel Factor Analysis (Parafac), which is a component analysis model designed for three- or higher-mode data. Using three-mode joint angle waveform data (subjects×time×joints), we demonstrate Parafac's ability to (a) determine interpretable components revealing the primary interrelationships between lower-limb joints in healthy gait and (b) identify interpretable components revealing the fundamental differences between normal and perturbed subjects' gait patterns across multiple joints. Our results offer evidence of the complex interconnections that exist between lower-limb joints and limb segments in both normal and abnormal gaits, confirming the need for the simultaneous analysis of multi-joint gait waveform data (especially when studying perturbed gait patterns).  相似文献   

17.
Biomechanical findings show that running is asymmetric in many kinetic properties. Running stiffness is a vital kinetic property of yet unknown pattern of lateralization. The aim of this study was to examine the degree and variability of lower limb dominance specific asymmetry of running in terms of leg stiffness, vertical stiffness, contact time, flight time, maximal ground reaction force during contact, vertical displacement of the center of mass, and change in leg length. Leg and vertical stiffness was estimated by the sine-wave method in 22 young males during treadmill running at 4.44 m/s. Lower limb dominance was determined by the triple-jump test. Asymmetry was expressed as dominant – non-dominant, and indexed by the absolute asymmetry index. Significant asymmetry was found only in flight time (3.98%) and in maximal ground reaction force (1.75%). The absolute asymmetry index ranged from 1.8% to 6.4%, showed high variation between subjects (0–31.6%), and differentiated among the 7 analyzed variables. Leg and vertical stiffness in treadmill running of moderate pace (4.44 m/s) should be considered symmetric.  相似文献   

18.
The motor control properties of the right and left legs are dependent on the stabilization and mobilization features of the motor tasks. The current investigation examined the right and left leg control differences – interlateral asymmetries – during static single leg stance and dynamic goal directed kicking with an emphasis of the asymmetrical stabilization and mobilization components of movements. Ten young, healthy, right-leg preferred individuals with minimal kicking experience completed both tests on each limb. During static single leg stance, participants were requested to stand as still as possible with one leg in contact with a force platform. Interlateral asymmetries of the standing leg were quantified using postural variability measures of the center of pressure (COP) standard deviation in the anterior-posterior (SD-COPAP) and medial-lateral (SD-COPML) directions, resultant COP length and velocity, and 95% COP elliptical area. During dynamic goal directed kicking, participants stood on two adjacent force platforms in a side-by-side foot position and kicked a soccer ball toward three different directions as soon as they received an auditory cue of kicking. Three targets were located −30°, 0° or 30° in front and 3.05 m away from the participants’ midline. Participants kicked the ball toward the targets with each of their feet. The vertical ground reaction force (vGRF) of the kicking leg was used to define the preparation (from above two standard deviations of vGRF baseline to toe-off) and swing (from toe-off to toe-return) phases of dynamic kicking. To determine the presence of interlateral asymmetries during dynamic kicking, the magnitude and timing of the anticipatory postural adjustments (APA) during the preparation phase of kicking were quantified using the lateral net COP (COPnet-ML) time series derived from both force platforms. Postural variability measures of the support leg and the kinematic joint range of motion (JROM) trajectories of the kicking leg were also used to examined interlateral asymmetries. During static stance, no between-leg significance was identified for all dependent measures of COP variability suggesting symmetrical stabilization. During the preparation phase of kicking, both right and left leg kicking exhibited a similar level of APA magnitude, although the left leg kicking was shown to reach its maximum APA magnitude earlier than the right leg. In the support leg role, the right leg showed greater COP variability in the ML direction as compared to the left support leg and greater COP variability was observed when kicking in the ipsilateral direction compared to the center and contralateral directions. For mobilization control, the left kicking leg showed greater JROM displacements at the distal (knee and ankle) joints and reduced JROM primarily with hip frontal plane movements compared to the right kicking leg. The reported interlateral asymmetries during kicking may reflect a behavioral adaptation that results in differential stabilization between the right and left legs. Overall, the findings suggest that novel tasks, such as dynamic goal directed kicking, appear to be more sensitive than static balance in identifying interlateral asymmetries.  相似文献   

19.
This investigation compared spatial and temporal gait movement parameters of a sample of individuals with Down syndrome (n=12) and one of individuals without disabilities (n=12). All participants were evaluated on responses to a preferred pace and fast walk with the GAITRite Electronic Walkway. Spatial outcomes included step and stride length, step and stride width, toe-in/toe-out, and base of support. Temporal outcomes included step time, velocity, single and double leg support time, stance, and swing time. There were significant group differences for step length, step width, stride length, and velocity in the preferred walk condition. Significant group differences for step length, step width, and stride length were observed in the fast walk condition. Percentage differences also indicated lower scores for all spatial and temporal variables in relation to the control group. The ability to control gait movements appears to reflect earlier movement experiences, so it may be possible to use variable sensory feedback and specific training to modify and adjust movement responses and improve gait performance in Down syndrome.  相似文献   

20.
Two experiments were performed to investigate the relation between age and use of advance probability information to prepare for a simple response. In both, an occasional presignal occurring about.5 sec before a possible response signal informed the subject that the probability of a response signal had increased from.1 to.5 In experiment 1, 24 women and men selected for short RT were tested, all between 21 and 78 yr of age. Subjects under 50 were able to use the advance information to shorten their RTs as were the majority of older subjects. However, for some older subjects the presignal produced a negative effect, a paradoxical lengthening of RT. In Experiment 2, using five of the older subjects from Experiment 1, more intensive testing was done with closer spacing of trials. Subjects who previously showed a lengthening of RT with the presignal now showed the typical shortening. In summary, over the age span investigated, almost all selected older subjects as well as younger subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号