首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Cerebral zones supporting language and recent memory were mapped by electrical stimulation during neurosurgical treatment of epileptic patients. Stimulation of sites within the left posterior temporo-parietal cortex produced transient dysphasia. Continued stimulation of this cortical region also produced a retrograde type of verbal memory disorder, indicating a failure in the mechanism responsible for retrieval of stored information. In contrast, stimulation of the anterior temporal neocortex did not produce anomia and, instead, resulted in an anterograde memory loss, apparently caused by a defect in the verbal storage mechanism. Comparable stimulation of homologous areas on the right hemisphere did not interfere with object naming or immediate verbal recall.  相似文献   

7.
BackgroundRecent studies of neurostimulation reported alteration of hypnotizability and hypnotic phenomena after inhibition of the dorsolateral prefrontal cortex (DLPFC), but the different assessments of hypnosis and the stimulation parameters still left open many questions about the role of this brain region in hypnotizability. We aimed to administer inhibitory transcranial direct current stimulation (tDCS) over the left DLPFC to observe effects of stimulation on the hypnotic experience and the feeling of agency.Methodsa procedure of hypnotic induction with suggestions was repeated twice: before and after the unilateral cathodal tDCS over the left DLPFC. The experience was assessed through a phenomenological assessment of hypnosis and sense of agency in thirty-three participants randomly assigned to the sham or the active group.Resultsactive (inhibitory) tDCS enhanced the hypnotizability by 15.4% and altered a few dimensions of consciousness such as self-awareness and absorption. No changes emerged on the feeling of agency and pass rates for suggestions.ConclusionstDCS reflects a promising tool to alter the hypnotic phenomena and the responsiveness to hypnotic procedures. Neurocognitive implications are discussed for the construct of hypnotizability as well as for the role of the left DLPFC in the dimensions of consciousness such as self-awareness.  相似文献   

8.
9.
Social conceptual knowledge is imperative to communicate with, interact with, and interpret human society; however, little is known about the neural basis of social concepts. Previous research has predominantly suggested that the right anterior temporal lobe (ATL) may specifically represent social conceptual knowledge, whereas the left ATL is necessary for general semantic processing. However, this view has not always been supported by empirical studies. Employing a lateralized design and two different semantic tasks and a nonsemantic control task, we aimed to clarify some of these ambiguities by potentially dissociating left from right functionality and social from nonsocial concepts, using inhibitory repetitive transcranial magnetic stimulation (rTMS) coupled with a sham and control site stimulation (N = 56). The results showed that stimulation of the left ATL led to overall faster processing times without affecting accuracy, whilst the right ATL and control groups did not significantly change in reaction times or accuracy. No difference occurred between social and nonsocial concepts after stimulation. This study is the first to show that inhibition of the left temporal lobe may improve performance on a semantic task and provides evidence that the ATLs may be lateralized in conceptual processing. The results do not confirm that the right temporal lobe is crucial for social conceptual processing, as inhibition did not significantly affect performance for social concepts.  相似文献   

10.
11.
Killing of mice was suppressed in 18 out of 24 rats by electrical stimulation of the region ventral to the anterior septum lying between the vertical arm of the diagonal band of Broca and the rostral limb of the anterior commissure. The mean effective minimum stimulation intensity was 8.2 uA (60 HZ, RMS). Stimulation of the cingulate cortex did not suppress mouse killing (mean stimulus intensity: 38.7 uA). Electrical recordings revealed after discharge in response to the stimulation in only one animal. At the stimulation intensity which suppressed mouse killing, there was no significant suppression of eating in 6 of 9 animals tested. These results are consistent with other evidence implicating the region ventral to the anterior septum in the modulation of mouse killing in the rat.  相似文献   

12.
A chronic tendency to avoid novelty is often the result of a temperamental bias called inhibited temperament, and is associated with increased risk for anxiety disorders. Neuroimaging studies have demonstrated that an inhibited temperament is associated with increased amygdalar blood-oxygenation-level-dependent (BOLD) response to unfamiliar faces that were not expected; however, the effects of variations in expectancy remain unknown. Using functional magnetic resonance imaging (fMRI), we studied BOLD response to infrequently encountered fear faces that were either expected or not expected in 42 adults with an inhibited or an uninhibited temperament. Individuals with an inhibited temperament had greater amygdala, but less dorsal anterior cingulate cortex (dACC), BOLD response when the stimuli were expected. In contrast, those with an uninhibited temperament had a smaller amygdala but larger dorsal anterior cingulate cortex BOLD response when expecting to see fear faces. These findings demonstrate temperament differences in expectancy effects and provide preliminary evidence for the dACC as a neural substrate mediating differences in inhibited temperament. Enhanced amygdala sensitivity coupled with weak inhibitory control from the dACC may form a neural circuit mediating behaviors characteristic of inhibited temperament and risk for anxiety disorders.  相似文献   

13.
The anterior cingulate cortex (ACC) plays a critical role in stimulus-reinforcement learning and reward-guided selection of actions. Here we conducted a series of experiments to further elucidate the role of the ACC in instrumental behavior involving effort-based decision-making and instrumental learning guided by reward-predictive stimuli. In Experiment 1, rats were trained on a cost-benefit T-maze task in which they could either choose to climb a barrier to obtain a high reward (four pellets) in one arm or a low reward (two pellets) in the other with no barrier present. In line with previous studies, our data reveal that rats with quinolinic acid lesions of the ACC selected the response involving less work and smaller reward. Experiment 2 demonstrates that breaking points of instrumental performance under a progressive ratio schedule were similar in sham-lesioned and ACC-lesioned rats. Thus, lesions of the ACC did not interfere with the effort a rat is willing to expend to obtain a specific reward in this test. In a subsequent task, we examined effort-based decision-making in a lever-press task where rats had the choice between pressing a lever to receive preferred food pellets under a progressive ratio schedule, or free feeding on a less preferred food, i.e. lab chow. Results show that sham- and ACC-lesioned animals had similar breaking points and ingested comparable amounts of less-preferred food. Together, the results of Experiment 1 and 2 suggest that the ACC plays a role in evaluating how much effort to expend for reward; however, the ACC is not necessary in all situations requiring an assessment of costs and benefits. In Experiment 3 we investigated learning and reversal learning of instrumental responses guided by reward predictive stimuli. A reaction time (RT) task demanding conditioned lever release was used in which the upcoming reward magnitude (five vs. one food pellet) was signalled in advance by discriminative visual stimuli. Results revealed that rats with ACC lesions were able to discriminate reward magnitude-predictive stimuli and to adapt instrumental behavior to reversed stimulus-reward magnitude contingencies. Thus, in a simple discrimination task as used here, the ACC appears not to be required to discriminate reward magnitude-predictive stimuli and to use the learned significance of the stimuli to guide instrumental behavior.  相似文献   

14.
15.
A large body of evidence indicates that the cerebellum is essential for the acquisition, retention, and expression of the standard delay conditioned eyeblink response and that the basic memory trace appears to be established in the anterior interpositus nucleus (IP). Adaptive timing of the conditioned response (CR) is a prominent feature of classical conditioning—the CR peaks at the time of onset of the unconditioned stimulus (US) over a wide range of CS-US interstimulus intervals (ISI). A key issue is whether this timing is established by the cerebellar circuitry or prior to the cerebellum. In this study timing of conditioned eyeblink responses established via electrical stimulation of the interpositus nucleus as a conditioned stimulus (CS) was analyzed prior to and following modification of the CS-US interval in well-trained rabbits. Consistent with previous results, learning under these conditions is very rapid and robust. The CR peak eyeblink latencies are initially timed to the US onset and adjust accordingly to lengthening or shortening of the CS-US interval, just as with peripheral CSs. The acquisition of conditioned eyeblink responses by direct electrical stimulation of the IP as a CS thus retains temporal flexibility following shifts in the CS-US delay, as found in standard classical eyeblink conditioning procedures.  相似文献   

16.
Short-term verbal memory (STVM) performance was measured during electrical stimulation of human left frontal-parietal-temporal cortex, at craniotomy under local anesthesia for the treatment of medically intractable epilepsy. The areas of cortex where stimulation alters language, as measured by object naming, are separate but adjacent to the areas where stimulation alters STVM. There are differential effects of stimulation during input, storage, and output phases of STVM at different cortical sites. These suggest that cortex adjacent to the posterior language area is a site of storage of STVM, while cortex adjacent to anterior language area is involved in retrieval from STVM.  相似文献   

17.
18.
Although past research has highlighted the involvement of limbic structures such as the anterior cingulate cortex (ACC) and hippocampus in learning, few have addressed the nature of their interaction. The current study of rabbit jaw movement conditioning used a combination of reversible lesions and electrophysiology to examine the involvement of the hippocampus and the ACC during acquisition, performance, and extinction. We found that microinfusions of procaine into the ACC did not significantly alter the rate of behavioral learning or the amplitude of hippocampal conditioned unit responses, but that they disrupted the rhythmic periodicity of conditioned jaw movements. During extinction, whereas controls showed a rapid decline in behavioral CRs and active inhibition of hippocampal unit responses, ACC lesioned rabbits showed a persistence of conditioning-related hippocampal activity and behavioral responding. The results show that the ACC can be important for adaptive suppression of conditioned behavior and suggest a crucial physiological modulation of hippocampus by ACC during extinction.  相似文献   

19.
20.
The aim of this study was to clarify the role of the prefrontal cortex (PFC) in physical effort regulation. We hypothesized that the PFC would be progressively involved in physical endurance through the engagement of cognitive inhibition, which would be necessary to maintain effort by inhibiting fatigue-related cues. This hypothesis was examined using a double-blind, sham-controlled, within-subjects study (N = 20) using high-definition (HD) transcranial direct current stimulation (tDCS) over the right dorsolateral prefrontal cortex (dlPFC). Participants had to maintain a knee extensor contraction at 30% of their maximal force while simultaneously performing an Eriksen flanker task to evaluate their inhibition performance during the task. Anodal stimulation of the dlPFC influenced response to the cognitive task during exercise, as seen by slower response times and better accuracy. However, it did not lead to any measureable improvement in cognitive inhibition and did not influence endurance time. There was no correlation between cognitive inhibition and the maintenance of physical effort. This result does not indicate a relationship between cognitive inhibition and endurance performance. The contribution of the PFC in physical endurance could be explained through its involvement on decisional processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号