首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
In 4 experiments, it was shown that hills appear steeper to people who are encumbered by wearing a heavy backpack (Experiment 1), are fatigued (Experiment 2), are of low physical fitness (Experiment 3), or are elderly and/or in declining health (Experiment 4). Visually guided actions are unaffected by these manipulations of physiological potential. Although dissociable, the awareness and action systems were also shown to be interconnected. Recalibration of the transformation relating awareness and actions was found to occur over long-term changes in physiological potential (fitness level, age, and health) but not with transitory changes (fatigue and load). Findings are discussed in terms of a time-dependent coordination between the separate systems that control explicit visual awareness and visually guided action.  相似文献   

2.
In 4 experiments, the authors varied the extent and nature of participant movement in a virtual environment to examine the influence of action on estimates of geographical slant. Previous studies showed that people consciously overestimate hill slant but can still accurately guide an action toward the hill (D. R. Proffitt, M. Bhalla, R. Gossweiler, & J. Midgett, 1995). Related studies suggest that one's potential to act may influence perception of slant and that distinct representations may independently inform perceptual and motoric responses. The authors found that in all conditions, perceptual judgments were overestimated and motoric adjustments were more accurate. The virtual environment allowed manipulation of the effort required to walk up simulated hills. Walking with the effort appropriate to the visual slant led to increased perceptual overestimation of slant compared with active walking with the effort appropriate to level ground, while visually guided actions remained accurate.  相似文献   

3.
Previous research has shown that hills appear steeper to those who are fatigued, encumbered, of low physical fitness, elderly, or in declining health (Bhalla & Proffitt, 1999; Proffitt, Bhalla, Gossweiler, & Midgett, 1995). The prevailing interpretation of this research is that observers’ perceptions of the environment are influenced by their capacity to navigate that environment. The current studies extend this programme by investigating more subtle embodied effects on perception of slant; namely those of mood. In two studies, with two different mood manipulations, and two estimates of slant in each, observers in a sad mood reported hills to be steeper. These results support the role of mood and motivational factors in influencing spatial perception, adding to the previous work showing that energetic potential can influence perception.  相似文献   

4.
Previous research has shown that hills appear steeper to those who are fatigued, encumbered, of low physical fitness, elderly, or in declining health (Bhalla & Proffitt, 1999; Proffitt, Bhalla, Gossweiler, & Midgett, 1995). The prevailing interpretation of this research is that observers' perceptions of the environment are influenced by their capacity to navigate that environment. The current studies extend this programme by investigating more subtle embodied effects on perception of slant; namely those of mood. In two studies, with two different mood manipulations, and two estimates of slant in each, observers in a sad mood reported hills to be steeper. These results support the role of mood and motivational factors in influencing spatial perception, adding to the previous work showing that energetic potential can influence perception.  相似文献   

5.
In two recent issues of Acta, the widely accepted view of Proffitt (2006), that ‘haptic’ measures of perceived geographical slant are generally accurate, and dissociated from explicit overestimates, came under intense scrutiny (Durgin, Hajnal, Li, Tonge, and Stigliani, 2010; 2011). Durgin and colleagues' challenge to this account centred on the claim that Proffitt's haptic’ measure of geographical slant, the palm-board, may be accidently accurate due to restricted movements available at the wrist. Two experiments reported here compare the accuracy of Proffitt's palm-board with an alternative measure of geographical slant perception, the Palm-Controlled Inclinometer (PCI), which allows participants to use wrist, elbow and shoulder movements to match slant with their hand. Participants (N = 320) made slant judgements using both measures, across five hills and five staircases with 32 participants for each stimulus angle (4.5°–31°). Results for the palm-board replicated those of Proffitt and co-workers, overestimation at shallow angles (≤ 14°), contrasted with underestimation at steeper angles (≥ 23°), whereas estimates made using the PCI had a greater degree of accuracy for steeper slopes. A follow-up experiment tested the accuracy of the palm-board and PCI for surfaces in near space to repeat the design of Durgin et al. (2010, experiment 1). Participants (N = 20) used the palm-board and PCI to judge the angle of slanted blocks (25°, 30°). As with traversable slopes, PCI judgements did not differ from the actual angle of the blocks whereas the palm-board measure underestimated. ‘Haptic’ measures of geographical slant perception can be accurate for relatively steep slopes, in both near and far space.  相似文献   

6.
Perceiving geographical slant   总被引:1,自引:0,他引:1  
People judged the inclination of hills viewed either out-of-doors or in a computer-simulated virtual environment. Angle judgments were obtained by having people (1) provide verbal estimates, (2) adjust a representation of the hill’s cross-section, and (3) adjust a tilt board with their unseen hand. Geographical slant was greatly overestimated according to the first two measures, but not the third. Apparent slant judgments conformed to ratio scales, thereby enhancing sensitivity to the small inclines that must actually be traversed in everyday experience. It is proposed that the perceived exaggeration of geographical slant preserves the relationship between distal inclination and people’s behavioral potential. Hills are harder to traverse as people become tired; hence, apparent slant increased with fatigue. Visually guided actions must be accommodated to the actual distal properties of the environment; consequently, the tilt board adjustments did not reflect apparent slant overestimations, nor were they influenced by fatigue. Consistent with the fact that steep hills are more difficult to descend than to ascend, these hills appeared steeper when viewed from the top.  相似文献   

7.
Previous studies have shown that conscious awareness of hill slant is overestimated, but visually guided actions directed at hills are relatively accurate. Also, steep hills are consciously estimated to be steeper from the top than the bottom, possibly because they are dangerous to descend. In the present study, participants stood at the top of a hill either on a skateboard or a wooden box of the same height. They gave three estimates of the slant: a verbal report, a visually matched estimate, and a visually guided action. Fear of descending the hill was also assessed. Those participants who were scared (by the skateboard) consciously judged the hill to be steeper than unafraid participants. However, the visually guided action measure was accurate across conditions. These results suggest that explicit awareness of slant is influenced by the fear associated with a potentially dangerous action that could be performed on the hill.  相似文献   

8.
9.
Whereas most reports of the perception of outdoor hills demonstrate dramatic overestimation, estimates made by adjusting a palm board are much closer to the true hill orientation. We test the dominant hypothesis that palm board accuracy is related to the need for motor action to be accurately guided and conclude instead that the perceptual experience of palm-board orientation is biased and variable due to poorly calibrated proprioception of wrist flexion. Experiments 1 and 3 show that wrist-flexion palm boards grossly underestimate the orientations of near, reachable surfaces whereas gesturing with a free hand is fairly accurate. Experiment 2 shows that palm board estimates are much lower than free hand estimates for an outdoor hill as well. Experiments 4 shows that wrist flexion is biased and noisy compared to elbow flexion, while Experiment 5 shows that small changes in palm board height produce large changes in palm board estimates. Together, these studies suggest that palm boards are biased and insensitive measures. The existing literature arguing that there are two systems in the perception of geographical slant is re-evaluated, and a new theoretical framework is proposed in which a single exaggerated representation of ground-surface orientation guides both action and perception.  相似文献   

10.
11.
12.
Shape constancy and slant perception at birth   总被引:1,自引:0,他引:1  
A Slater  V Morison 《Perception》1985,14(3):337-344
Two experiments are described the object of which was to investigate whether perception of shape at birth is determined solely by proximal (retinal) stimulation, or whether newborn babies have the ability to perceive objective, real shape across changes in slant. In experiment 1 looking at (ie preference for) one stimulus, a square, when paired with either of two trapeziums, was found to change in a consistent manner with changes in slant, indicating that these changes in stimulation are detected and can cause considerable changes in looking behaviour. In experiment 2 newborns were desensitized to changes in slant during familiarization trials, and subsequently strongly preferred a different shape to the familiarized shape in a new orientation. This suggests that the real shape had been perceived as invariant across the retinal changes caused by the changes in slant, and further suggests that shape constancy is an organizing feature of perception which is present at birth.  相似文献   

13.
Backus BT  Banks MS 《Perception》1999,28(2):217-242
When a horizontal or vertical magnifier is placed before one eye, a frontoparallel surface appears slanted. It appears slanted away from the eye with horizontal magnification (geometric effect) and toward the eye with vertical magnification (induced effect). According to current theory, the apparent slant in the geometric and induced effects should increase with viewing distance. The geometric effect does scale with distance, but there are conflicting reports as to whether the induced effect does. Ogle (1938 Archives of Ophthalmology 20 604-623) reported that settings in slant-nulling tasks increase systematically with viewing distance, but Gillam et al (1988 Perception & Psychophysics 44 473-483) and Rogers et al (1995 Perception 24 Supplement, 33) reported that settings in slant-estimation tasks do not. We re-examined this apparent contradiction. First, we conducted two experiments whose results are consistent with the literature and thus replicate the apparent contradiction. Next, we analyzed the signals available for stereoscopic slant perception and developed a general model of perceived slant. The model is based on the assumption that the visual system knows the reliability of various slant-estimation methods for the viewing situation under consideration. The model's behavior explains the contradiction in the literature. The model also predicts that, by manipulating eye position, apparent slant can be made to increase with distance for vertical, but not for horizontal, magnification. This prediction was confirmed experimentally.  相似文献   

14.
To assess the development of monocular slant perception as well as the relative effectiveness of different sources of information, children in first, third, and fifth grades and college adults were asked to make judgments of surface slant on the basis of monocular texture gradient information. Accuracy of judgment increased with increasing age. In addition, differences in gradient effectiveness were found. Compression gradients were relatively ineffective sources of information, whereas perspective and multiple gradients resulted in greater accuracy. The results suggest limitations on the specificity of certain forms of gradients.  相似文献   

15.
Linear transformations (shear or scale transformations) of either horizontal or vertical disparity give rise to the percept of slant or inclination. It has been proposed that the percept of slant induced by vertical size disparity, known as Ogle's induced-size effect, and the analogous induced-shear effect, compensate for scale and shear distortions arising from aniseikonia, eccentric viewing, and cyclodisparity. We hypothesised that these linear transformations of vertical disparity are processed more slowly than equivalent transformations of horizontal disparity (horizontal shear and size disparity). We studied the temporal properties of the stereoscopic slant and inclination percepts that arose when subjects viewed stereograms with various combinations of horizontal and vertical size or shear disparities. We found no evidence to support our hypothesis. There were no clear differences in the build-up of percepts of slant or inclination induced by step changes in horizontal size or shear disparity and those induced by step changes in vertical size or shear disparity. Perceived slant and inclination decreased in a similar manner with increasing temporal frequency for modulations of transformations of both horizontal and vertical disparity. Considerable individual differences were found and several subjects experienced slant reversal, particularly with oscillating stimuli. An interesting finding was that perceived slant induced by modulations of dilation disparity was in the direction of the vertical component. This suggests the vertical size disparity mechanism has a higher temporal bandwidth than the horizontal size disparity mechanism. However, conflicting perspective information may play a dominant role in determining the temporal properties of perceived slant and inclination.  相似文献   

16.
17.
Witt JK  Proffitt DR 《Perception》2007,36(2):249-257
Perceived slant is grossly overestimated, such that 5 degrees hills look to be about 20 degrees. However, overestimation is found only in visual and verbal measures of apparent slant; action measures are accurate. This dissociation is consistent with several lines of research that suggest that there exist two perceptual processes, one for visually guided actions and another for explicit awareness. However, studies in other contexts have shown that analogous effects can be the result of differences in the task demands associated with the responses themselves as opposed to the processes underlying the responses. Two experiments are reported in which these alternatives were tested. Our results are consistent with the hypothesis that two perceptual processes underlie the dissociation between explicit awareness and visuomotor assessments of perceived slant.  相似文献   

18.
Random dot stereograms of slanted surfaces were constructed, each representing one or two slanted surfaces in different relative arrangements and with different axes. Latency to fusion and from fusion to stereoscopic resolution was measured for each stimulus. It was found that latency to fusion was always very brief but that latency to stereoscopic resolution varied markedly, depending upon the orientation and arrangement of the stereoscopic surfaces. A gradient of discontinuities at a surface boundary produced an instant slant response for that surface, whereas a gradient of absolute disparities across the surface did not, except under conditions where vertical declination (a form of orientation disparity) was present. We conclude that stereopsis is not based on the primitives used in matching the images for fusion and that it is, at least initially, a response to disparity discontinuities which play no role in the fusion process. We also conclude that vertical declination is responded to globally as a slant around a horizontal axis but that other forms of orientation disparity are ineffective. The evidence from our experiments does not support the existence of a stereoscopic ability to respond globally to differences in magnification (or spatial frequency). It is suggested that stereoscopic perception of slant around a vertical axis is slow because it results from the integration of local processes.  相似文献   

19.
20.
Orientation disparity, deformation, and stereoscopic slant perception.   总被引:1,自引:0,他引:1  
B Gillam  B Rogers 《Perception》1991,20(4):441-448
Koenderink and van Doorn's theory, that the basis of stereoscopic slant perception is the deformation component of the disparity, field, was tested for slant around a horizontal axis, which produces images with a vertical ramp of horizontal disparity (horizontal shear) characterised by a global orientation disparity at the vertical meridian. The disparity field in this case can be parsed into two components, deformation and curl, which each contribute half of the orientation disparity. This case was compared with similar random-dot stimuli in which the deformation component was doubled and the curl component eliminated or vice versa. All three types of stimuli had identical orientation disparity at the vertical meridian. A condition in which there was no such orientation disparity, but deformation was present, was also included. It was found that perceived slant was not related to the deformation present, as Koenderink and van Doorn's theory would predict, but was predictable from the orientation disparity at the vertical meridian per se.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号