首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hemispheric differences in grammatical class.   总被引:5,自引:0,他引:5  
Although a number of studies have examined lexical asymmetries in hemispheric processing, few have systematically investigated differences between nouns and verbs. Lateralization effects of grammatical class were examined by presenting nouns and verbs of both high and low frequency to either the right or left visual field. Results from both a noun/verb categorization and a lexical decision task revealed a significant visual field by grammatical class interaction. Further analyses revealed that verbs were processed faster in the left compared to the right hemisphere, while there was no hemispheric advantage for the processing of nouns. The present study provides new evidence for the role of grammatical class in lexical processing.  相似文献   

2.
We investigated whether abstract and concrete words would be differentially effective in priming lexical decisions to words presented to the right and left visual fields. Under low probability prime conditions, where priming is presumed to reflect a spreading activation process within the lexicon, equivalent priming was obtained in each VF for both abstract and concrete primes. However, when the same words were used in a high probability prime paradigm, abstract primes were much less effective in the LVF than in the RVF, while priming with concrete words did not differ across the visual fields. Since such priming may reflect a postlexical semantic integration stage, the results imply that hemisphere differences for processing abstract and concrete words may arise only after lexical access has occurred, when semantic information retrieved from the lexicon becomes available for subsequent processing.  相似文献   

3.
Hemispheric specialization for reading   总被引:5,自引:0,他引:5  
Behavioral laterality tasks with linguistic stimuli were used to assess the differential processing efficiencies of the cerebral hemispheres in right- and left-handed adults. Findings from a lateralized lexical decision task with concrete nouns supported Zaidel's (1983) "direct access" model of hemispheric functioning. A dual task consisting of oral and silent reading indicated that the right hand was significantly more disrupted than the left during unimanual finger tapping; however, some bilateral interference was observed. Taken together the findings suggest that although the left hemisphere was relatively more efficient, the right hemisphere was dynamically involved in the reading process.  相似文献   

4.
汉语同形歧义词歧义消解的两半球差异   总被引:1,自引:0,他引:1  
实验探讨汉语同形歧义词(homographs)歧义消解的过程及大脑两半球的差异。被试为华中科技大学96名大学生,实验采用词汇判断任务。句子语境呈现在被试的视野中央,探测词在SOA(stimulus onset asynchronism)为100毫秒或400毫秒时呈现在左视野或右视野。结果发现,(1)当SOA为100毫秒时,在左视野(右半球)上,与语境一致的同形歧义词的主要意义得到激活,与语境不一致的次要意义也有一定程度的激活。在右视野(左半球)上,只有与语境一致的同形歧义词的主要意义得到激活。(2)当SOA为400毫秒时,在左、右视野(两半球)上,与语境一致的同形歧义词的主要意义和次要意义都得到激活。结果表明,大脑左半球对汉语歧义词的歧义消解具有一定的优势,语境敏感模型可以较好地解释本实验的结果。  相似文献   

5.
To investigate hemispheric differences in the timing of word priming, the modulation of event-related potentials by semantic word relationships was examined in each cerebral hemisphere. Primes and targets, either categorically (silk-wool) or associatively (needle-sewing) related, were presented to the left or right visual field in a go/no-go lexical decision task. The results revealed significant reaction-time and physiological differences in both visual fields only for associatively related word pairs, but an electrophysiological difference also tended to reach significance for categorically related words when presented in the left visual field. ERP waveforms showed a different time-course of associative priming effects according to the field of presentation. In the right visual field/left hemisphere, both N400 and Late Positive Component (LPC/P600) were modulated by semantic relatedness, while only a late effect was present in the left visual field/ right hemisphere.  相似文献   

6.
Modes of word recognition in the left and right cerebral hemispheres   总被引:6,自引:5,他引:1  
Four experiments are reported examining the effects of word length on recognition performance in the left and right visual hemifields (LVF, RVF). In Experiments 1 and 2 length affected lexical decision latencies to words presented in the LVF but not to words presented in the RVF. This result was found for both concrete and abstract nouns. Changing from a normal horizontal format to the use of unconventionally "stepped" words, however, produced length effects for words in both visual hemifields (Experiment 3). The Length x VHF interaction was found once again in Experiment 4 where subjects classified words as either concrete or abstract. A model proposing two modes of visual processing of letter strings is presented to account for these findings. Mode A operates independent of string length and is seen only in left hemisphere analysis of familiar words. Mode B is length dependent: it is the only mode possessed by the right hemisphere but is displayed by the left hemisphere to nonwords and to words in abnormal formats.  相似文献   

7.
Three experiments were conducted to investigate the influence of contextual constraint on lexical ambiguity resolution in the cerebral hemispheres. A cross-modal priming variant of the divided visual field task was utilized in which subjects heard sentences containing homonyms and made lexical decisions to targets semantically related to dominant and subordinate meanings. Experiment 1 showed priming in both hemispheres of dominant meanings for homonyms embedded in neutral sentence contexts. Experiment 2 showed priming in both hemispheres of dominant and subordinate meanings for homonyms embedded in sentence contexts that biased a central semantic feature of the subordinate meaning. Experiment 3 showed priming of dominant meanings in the left hemisphere (LH), and priming of the subordinate meaning in the right hemisphere (RH) for homonyms embedded in sentences that biased a peripheral semantic feature of the subordinate meaning. These results are consistent with a context-sensitive model of language processing that incorporates differential sensitivity to semantic relationships in the cerebral hemispheres.  相似文献   

8.
Hemisphere dynamics in lexical access: automatic and controlled priming   总被引:10,自引:9,他引:1  
Hemisphere differences in lexical processing may be due to asymmetry in the organization of lexical information, in procedures used to access the lexicon, or both. Six lateralized lexical decision experiments employed various types of priming to distinguish among these possibilities. In three controlled (high probability) priming experiments, prime words could be used as lexical access clues. Larger priming was obtained for orthographically similar stimuli (BEAK-BEAR) when presented to the left visual field (LVF). Controlled priming based on phonological relatedness (JUICE-MOOSE) was equally effective in either visual field (VF). Semantic similarity (INCH-YARD) produced larger priming for right visual field (RVF) stimuli. These results suggest that the hemispheres may utilize different information to achieve lexical access. Spread of activation through the lexicon was measured in complementary automatic (low probability) priming experiments. Priming was restricted to LVF stimuli for orthographically similar words, while priming for phonologically related stimuli was only obtained in the RVF. Automatic semantic priming was present bilaterally, but was larger in the LVF. These results imply hemisphere differences in lexical organization, with orthographic and semantic relationships available to the right hemisphere, and phonological and semantic relations available to the left hemisphere. Support was obtained for hemisphere asymmetries in both lexical organization and directed lexical processing.  相似文献   

9.
This study investigated spreading activation for words presented to the left and right hemispheres using an automatic semantic priming paradigm. Three types of semantic relations were used: similar-only (Deer-Pony), associated-only (Bee-Honey), and similar + associated (Doctor-Nurse). Priming of lexical decisions was symmetrical over visual fields for all semantic relations when prime words were centrally presented. However, when primes and targets were lateralized to the same visual field, similar-only priming was greater in the LVF than in the RVF, no priming was obtained for associated-only words, and priming was equivalent over visual fields for similar + associated words. Similar results were found using a naming task. These findings suggest that it is important to lateralize both prime and target information to assess hemisphere-specific spreading activation processes. Further, while spreading activation occurs in either hemisphere for the most highly related words (those related by category membership and association), our findings suggest that automatic access to semantic category relatedness occurs primarily in the right cerebral hemisphere. These results imply a unique role for the right hemisphere in the processing of word meanings. We relate our results to our previous proposal (Burgess & Simpson, 1988a; Chiarello, 1988c) that there is rapid selection of one meaning and suppression of other candidates in the left hemisphere, while activation spreads more diffusely in the right hemisphere. We also outline a new proposal that activation spreads in a different manner for associated words than for words related by semantic similarity.  相似文献   

10.
Although lexical decision remains one of the most extensively studied cognitive tasks, very little is known about its relationship to broader linguistic performance such as reading ability. In a correlational study, several aspects of lateralized lexical decision performance were related to vocabulary and reading comprehension measures, as assessed using the Nelson-Denny Reading Test. This lateralized lexical decision task has been previously shown to demonstrate (1) independent contributions from both hemispheres, as well as (2) interhemispheric interactions during word recognition. Lexical decision performance showed strong relationships with both reading measures. Specifically, vocabulary performance correlated significantly with left visual field (LVF) word accuracy and LVF non-word latency, both measures of right hemisphere performance. There were also significant, though somewhat weaker, correlations between reading comprehension and RVF non-word latency. Lexicality priming, a measure of interhemispheric communication during lexical decision, was also correlated with reading comprehension. These results suggest that hemispheric interaction during word recognition is common, and that lexical processing contribution from the right hemisphere, something commonly taken as minor and inconsequential, can lead to significant performance benefits and to individual differences in reading.  相似文献   

11.
We investigated hemispheric differences and inter-hemispheric transfer of facilitation in automatic semantic priming, using prime-target pairs composed of words of the same category but not associated (e.g. skirt-glove), and a blank-target baseline condition. Reaction time and accuracy were measured at short (300 ms) intervals between prime and target onsets, using a go/no-go task to discriminate between word or non-word targets. Reaction times were facilitated more for target words presented in the right visual field (RVF) compared to the left visual field (LVF), and targets presented in RVF were primed in both visual fields, whereas targets presented in LVF were primed by primes in the LVF only. These results suggest that both hemispheres are capable of automatic priming at very short stimulus onset asymmetries (SOA), but cross-hemisphere priming occurs only in the left hemisphere.  相似文献   

12.
This study examined whether the right hemisphere's contribution to lexical semantic processing is greatest when it is "disinhibited." Skilled reading may require the controlled modulation of interhemispheric interaction: the left hemisphere (or some other control mechanism) may regulate the subprocesses of reading by selectively "inhibiting" and "disinhibiting" right hemisphere function. Right-handed undergraduates concurrently performed two tasks: a lateralized semantic or rhyme task and a verbal memory task. It was hypothesized that right hemisphere reading processes would be disinhibited when the left hemisphere was "occupied" with the memory task. This hypothesis was supported for a subgroup of subjects who showed evidence of inhibition of right hemisphere function (i.e., left hemisphere dominance for lexical processing) when the lateralized semantic task was performed alone. Across subjects, there was a strong correlation between the degree of left hemisphere dominance in the single-task semantic conditions and the degree of disinhibition of right hemisphere function in the dual-task semantic condition.  相似文献   

13.
The present study examined the relationship between word concreteness and word frequency using event-related potential (ERP) measurements during a lexical decision task. Potential effects of concreteness in the processing of verbs were also examined. ERPs were recorded from 119 scalp electrodes in 23 right-handed participants. The results showed that concrete nouns were associated with a more negative ERP than abstract nouns at 200-300 and 300-500 ms after stimulus onset, regardless of word frequency. Between 300 and 500 ms, concrete nouns and abstract nouns produced differentiated scalp distributions, respectively. In terms of verbs, concreteness only produced small difference in ERP primarily in the central-parietal sites of the left hemisphere.  相似文献   

14.
The unification of mind: Integration of hemispheric semantic processing   总被引:1,自引:0,他引:1  
Seventy-six participants performed a visual half-field lexical decision task at two different stimulus onset asynchronies (50 or 750 ms). Word targets were primed either by a highly associated word (e.g., CLEAN-DIRTY), a weakly associated word (e.g., CLEAN-TIDY), or an unrelated word (e.g., CLEAN-FAMILY) projected to either the same or opposite visual field (VF) as the target. In the short SOA, RVF-left hemisphere primes resulted in high associate priming regardless of target location (ipsilateral or contralateral to the prime) whereas LVF-right hemisphere primes produced both high and low associate priming across both target location conditions. In the long SOA condition, contralateral priming patterns converged, demonstrating only high associate priming in both VF locations. The results of this study demonstrate the critical role of interhemispheric transfer in semantic processing and indicate a need to elaborate current models of semantic processing.  相似文献   

15.
Structural influences on lexical ambiguity resolution in the two cerebral hemispheres was investigated using a divided visual field procedure. Participants were presented with auditory Wh- sentences containing an ambiguous word, where the grammatical role of the word was apparent only at a sentence-final verb (e.g., "Which BANK did the woman see?"). Following a sentence, either immediately or after 600 ms, a target word was presented in either the right or left visual field. Targets were related to the ambiguous word's dominant meaning (MONEY), the subordinate meaning (RIVER), or were unrelated. With left visual field presentation, priming occurred for both dominant- and subordinate-related targets at a 0 ms delay, but only for dominant-related targets at 600 ms. With left visual field presentation, priming occurred for subordinate-related targets only at both delays. The results suggest that grammatical assignment triggers the selection of meaning in the left hemisphere, whereas processing in the right hemisphere operates independently of structural analyses.  相似文献   

16.
A divided visual field, priming paradigm was used to observe how adults who have a history of developmental language disorder (DLD) access lexically ambiguous words. The results show that sustained semantic access to subordinate word meanings (such as BANK-RIVER), which is seen in control subjects, is disrupted in the right cerebral hemisphere for this special population of readers. In the left hemisphere, only the most dominant meaning of the ambiguous word shows sustained priming in both controls and DLD participants. Therefore, for the DLD readers the subordinate meanings of words are not primed in either hemisphere and, thus, may not be available during online processing and integration of discourse. This right hemisphere lexical access deficit might contribute to the language comprehension difficulties exhibited by adult readers with a history of DLD.  相似文献   

17.
In three experiments, we examined the internal processing mechanisms of relatively independent visual-form subsystems. Participants first viewed centrally presented word pairs and then completed word stems presented beneath context words in the left or right visual field. Letter-case-specific priming in stem completion was found only when the context word was the same word that had previously appeared above the primed completion word and the items were presented directly to the right cerebral hemisphere. This pattern of results was not found when participants deliberately recollected previously presented words when completing the stems. Results suggest that holistic processing, not parts-based processing as assumed in many contemporary theories of visual-form recognition, is performed in a subsystem that distinguishes specific instances in the same abstract category of form and that operates more effectively in the right hemisphere than in the left hemisphere.  相似文献   

18.
罗文波  齐正阳 《心理学报》2022,54(2):111-121
具体性和抽象性是词汇同一特性的两极, 是直接影响词汇加工过程的重要因素。本研究采用快速序列视觉呈现范式, 结合脑电技术探讨在有限注意资源内, 词汇具体性对情绪名词加工过程的影响。结果发现:名词加工早期和晚期阶段的ERP成分受到情绪效价的调节, 情绪词比中性词诱发了更大的N170和LPC波幅; 名词加工早期和晚期阶段的ERP成分也受到词汇具体性的调节, 具体词比抽象词诱发了更大的N170和LPC波幅; 词汇具体性影响情绪名词加工的晚期阶段, LPC波幅能够分辨出不同情绪效价的抽象词, 对于具体词仅能区分出情绪与非情绪, 这说明抽象词可能比具体词负载了更多的情绪信息, 反映出对情绪信息的精细加工过程。  相似文献   

19.
Evidence suggests that the cerebral hemispheres are differentially specialised for the processing of positively and negatively valenced affective material. The present study examined the consequences of this for the availability in each hemisphere of lexical entries related to positive, neutral, and negative affect. A threshold recognition task was used to assess the identification of positive, neutral, and negative emotionally toned nouns projected to the right or left visual field. A strong lateral asymmetry in favour of right visual field recognition of nouns was observed. Whereas women showed no evidence of changes in lateral asymmetry as a function of affect, lateral asymmetry in men was significantly greater for positive nouns. This finding points to a difference in the representation of affective material in the left and right lexicons of the male brain, and provides support for the notion that gender may be one of the keys to reconciling some of the contradictory findings that characterise this area of research.  相似文献   

20.
It has been suggested that neural systems for lexical processing of nouns and verbs are anatomically distinct. The aim of the present study was to investigate if brain asymmetry for the processing of these two grammatical classes is also different. Neurologically intact adults performed a lateralized lexical decision task with grammatically unambiguous words of high, medium, and low degrees of imagery. For error scores a right visual field (RVF) advantage and an overall effect of imageability were obtained. For latency scores grammatical class and imageability modified visual field differences: in the noun class a RVF advantage was obtained only for low imagery nouns, while for the verbs the RVF advantage was present for both medium and low imagery verbs. These results suggest that the participation of right hemisphere neural systems in the processing of verbs is more limited than in the processing of nouns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号