首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extensive evidence indicates that the septum plays a predominant role in fear learning, yet the direction of this control is still a matter of debate. Increasing data suggest that the medial (MS) and lateral septum (LS) would be differentially required in fear conditioning depending on whether a discrete conditional stimulus (CS) predicts, or not, the occurrence of an aversive unconditional stimulus (US). Here, using a tone CS-US pairing (predictive discrete CS, context in background) or unpairing (context in foreground) conditioning procedure, we show, in mice, that pretraining inactivation of the LS totally disrupted tone fear conditioning, which, otherwise, was spared by inactivation of the MS. Inactivating the LS also reduced foreground contextual fear conditioning, while sparing the higher level of conditioned freezing to the foreground (CS-US unpairing) than to the background context (CS-US pairing). In contrast, inactivation of the MS totally abolished this training-dependent level of contextual freezing. Interestingly, inactivation of the MS enhanced background contextual conditioning under the pairing condition, whereas it reduced foreground contextual conditioning under the unpairing condition. Hence, the present findings reveal a functional dissociation between the LS and the MS in Pavlovian fear conditioning depending on the predictive value of the discrete CS. While the requirement of the LS is crucial for the appropriate processing of the tone CS-US association, the MS is crucial for an appropriate processing of contextual cues as foreground or background information.  相似文献   

2.
Using a conditioned taste aversion procedure with rats as the subjects, two experiments examined the effect of presenting a conditioned stimulus (CS saccharin solution) in one context followed by an unconditioned stimulus (US LiCl) in a different context. Experiment 1 showed that animals which received the above-mentioned procedure (Group D) showed a more marked conditioned aversion to the CS than animals which were given both the CS and the US in the same context (Group S). Experiment 2 found that in both Group D and Group S, aversion to the CS increased when the subjects were exposed to the conditioned context after the conditioning. These findings supported the argument that the strength of the CS-US association acquired during conditioning is compared with that of the context-US to determine the magnitude of aversion revealed to the CS.  相似文献   

3.
Previous data suggest that overtraining can overcome fear conditioning deficits in rats with lesions of the basolateral complex of the amygdala (BLA). We have previously shown that the central nucleus of the amygdala (CEA) is essential for the acquisition and expression of conditional fear to both contextual and auditory conditioned stimuli (CSs) after overtraining. This provides strong evidence that the CEA can compensate for the loss of the BLA. Another brain area that may compensate for the loss of the BLA is the bed nucleus of the stria terminalis (BNST). We explored this possibility by examining the consequences of lesions or reversible inactivation of the BNST on the expression of overtrained fear in rats with BLA lesions. We demonstrate that lesions or inactivation of the BNST block the expression of freezing to the conditioning context, but not to an auditory conditional stimulus. These results reveal that the BNST has a critical role in the expression of contextual fear, but not fear to an auditory CS, and is therefore not the essential locus of compensation for fear learning in the absence of the BLA.  相似文献   

4.
The association between a conditioned stimulus (CS) and an unconditioned stimulus (US) in fear-conditioning depends on N-methyl-D-aspartate (NMDA) receptors in the basolateral amygdala complex (BLA). Latent inhibition (LI) is the retardation in learning due to nonreinforced presentation of the prospective CS before conditioning. Disruption of LI in rats is an animal model of schizophrenia, reflecting the deficits of schizophrenic patients in neglecting irrelevant information. We investigated whether the BLA is involved in LI of fear-potentiated startle. Infusions of the NMDA receptor antagonist D,L-2-amino-5-phosphonopentanoic acid (AP-5; 12.5 nmoles) into the BLA before preexposure of rats to the neutral stimulus prevent LI of fear-conditioning. We also demonstrated by the same method that a complex of thalamic nuclei, comprising the medial part of the medial geniculate nucleus, the posterior intralaminar nucleus, and the suprageniculate nucleus, is involved in fear-conditioning, but not in LI. This suggests that the presentation of an innocuous stimulus during preexposure leads to an NMDA receptor-dependent change of neurotransmission in the BLA, but not in the thalamus. Our data show that the BLA but not the thalamus regulates in LI of fear-potentiated startle. Furthermore, it supports the hypothesis that the inability of schizophrenic patients to ignore irrelevant stimuli may be caused by hypofunction of the glutamatergic transmission in the brain and suggests an involvement of the amygdala in the neuropathology of schizophrenia.  相似文献   

5.
In four experiments we investigated whether signaled and unsignaled US presentations resulted in differential context conditioning. Experiments 1 and 2 showed that the presence of a tone during grain presentation facilitated the formation of tone-food associations in pigeons. Experiment 2 also showed that the acquisition of associative value by the tone did not diminish associations between context and the unconditioned stimulus (US). Experiment 3 showed that signaled USs did not interfere with the acquisition of context-US associations, and Experiment 4 showed that even when the signal was extensively pretrained, context-US associations could not be blocked. The results of these experiments are inconsistent with conditioning models that require competition between cues and contexts for associative value.  相似文献   

6.
Fear conditioning is a form of associative learning in which subjects come to express defense responses to a neutral conditioned stimulus (CS) that is paired with an aversive unconditioned stimulus (US). Considerable evidence suggests that critical neural changes mediating the CS-US association occur in the lateral nucleus of the amygdala (LA). Further, recent studies show that associative long-term potentiation (LTP) occurs in pathways that transmit the CS to LA, and that drugs that interfere with this LTP also disrupt behavioral fear conditioning when infused into the LA, suggesting that associative LTP in LA might be a mechanism for storing memories of the CS-US association. Here, we develop a detailed cellular hypothesis to explain how neural responses to the CS and US in LA could induce LTP-like changes that store memories during fear conditioning. Specifically, we propose that the CS evokes EPSPs at sensory input synapses onto LA pyramidal neurons, and that the US strongly depolarizes these same LA neurons. This depolarization, in turn, causes calcium influx through NMDA receptors (NMDARs) and also causes the LA neuron to fire action potentials. The action potentials then back-propagate into the dendrites, where they collide with CS-evoked EPSPs, resulting in calcium entry through voltage-gated calcium channels (VGCCs). Although calcium entry through NMDARs is sufficient to induce synaptic changes that support short-term fear memory, calcium entry through both NMDARs and VGCCs is required to initiate the molecular processes that consolidate synaptic changes into a long-term memory.  相似文献   

7.
The basolateral amygdala complex (BLA) is involved in acquisition of contextual and auditory fear conditioning. However, the BLA is not a single structure but comprises a group of nuclei, including the lateral (LA), basal (BA) and accessory basal (AB) nuclei. While it is consensual that the LA is critical for auditory fear conditioning, there is controversy on the participation of the BA in fear conditioning. Hodological and neurophysiological findings suggest that each of these nuclei processes distinct information in parallel; the BA would deal with polymodal or contextual representations, and the LA would process unimodal or elemental representations. Thus, it seems plausible to hypothesize that the BA is required for contextual, but not auditory, fear conditioning. This hypothesis was evaluated in Wistar rats submitted to multiple-site ibotenate-induced damage restricted to the BA and then exposed to a concurrent contextual and auditory fear conditioning training followed by separated contextual and auditory conditioning testing. Differing from electrolytic lesion and lidocaine inactivation, this surgical approach does not disturb fibers of passage originating in other brain areas, restricting damage to the aimed nucleus. Relative to the sham-operated controls, rats with selective damage to the BA exhibited disruption of performance in the contextual, but not the auditory, component of the task. Thus, while the BA seems required for contextual fear conditioning, it is not critical for both an auditory-US association, nor for the expression of the freezing response.  相似文献   

8.
The basolateral complex of the amygdala (BLA) is critical for the acquisition and expression of Pavlovian fear conditioning in rats. Nonetheless, rats with neurotoxic BLA lesions can acquire conditional fear after overtraining (75 trials). The capacity of rats with BLA lesions to acquire fear memory may be mediated by the central nucleus of the amygdala (CEA). To examine this issue, we examined the influence of neurotoxic CEA lesions or reversible inactivation of the CEA on the acquisition and expression of conditional freezing after overtraining in rats. Rats with pretraining CEA lesions (whether alone or in combination with BLA lesions) did not acquire conditional freezing to either the conditioning context or an auditory conditional stimulus after extensive overtraining. Similarly, post-training lesions of the CEA or BLA prevented the expression of overtrained fear. Lastly, muscimol infusions into the CEA prevented both the acquisition and the expression of overtrained fear, demonstrating that the effects of CEA lesions are not likely due to the destruction of en passant axons. These results suggest that the CEA is essential for conditional freezing after Pavlovian fear conditioning. Moreover, overtraining may engage a compensatory fear conditioning circuit involving the CEA in animals with damage to the BLA.  相似文献   

9.
We report that post-training inactivation of basolateral amygdala region (BLA) with muscimol impaired memory for contextual-fear conditioning (as measured by freezing) and intra-BLA norepinephrine enhanced this memory. However, pre-exposure to the context eliminated both of these effects. These findings provide a likely explanation of why an earler study failed to observe that the BLA modulates contextual fear conditioning-they pre-exposed their rats to the context. These results also suggest that the amygdala modulates the storage of the context fear memory and may do so by influencing the storage of the representation of the context in which the shock occurred.  相似文献   

10.
In rodents, fear conditioned responses are more pronounced toward olfactory stimulus, since olfaction is a dominant sense in these subjects. The present study was outlined to investigate if the association between coffee odor (CS1) and electrical footshock (US) would be an effective model for the study of fear-induced behavior and whether compounds used in humans for emotional-related disorders such as midazolam, propranolol, or scopolamine, applied during the different stages of fear conditioning (acquisition, consolidation and expression), affect the defensive responses to both, the olfactory CS1, and the context (CS2) where the CS1 had been presented (second order conditioning). The results revealed that five pairings between coffee odor (CS1) and electrical footshock (US) were able to elicit consistent defensive responses and a second order conditioning to the context (CS2). Midazolam (0.375–0.5 mg/kg; i.p.) treatment was able to interfere with the CS1–US association and with the consolidation of the aversive information. The propranolol (5–10 mg/kg; i.p.) treatment interfered with the CS1–US association, with the retention of fear memory and with the CS1–CS2 association. Propranolol also attenuated the expression of conditioned fear responses when applied before the CS1 test session. Scopolamine (0.6–1.2 mg/kg; i.p.) treatment impaired the acquisition of CS1–US and CS1–CS2 associations, and also disrupted the expression of conditioned fear responses when injected prior to the CS1 test session. These findings have pointed out the usefulness for the olfactory fear conditioning paradigm to investigate drug effects on the acquisition, consolidation and expression of fear conditioned responses.  相似文献   

11.
In classical fear conditioning, a neutral sensory stimulus (CS) acquires the ability to elicit fear responses after pairing to a noxious unconditioned stimulus (US). As amygdala lesions prevent the acquisition of fear responses and the lateral amygdaloid (LA) nucleus is the main input station of the amygdala for auditory afferents, the effect of auditory fear conditioning on the sensory responsiveness of LA neurons has been examined. Although conditioning was shown to increase CS-evoked LA responses, the specificity of the changes in responsiveness was not tested. Because conditioning might induce nonspecific increases in LA responses to auditory afferents, we re-examined this issue in conscious, head-restrained cats using a differential conditioning paradigm where only one of two tones (CS(+) but not CS(-)) was paired to the US. Differential conditioning increased unit and field responses to the CS(+), whereas responses to the CS(-) decreased. Such changes have never been observed in the amygdala except in cases where the CS(-) had been paired to the US before and fear responses not extinguished. This suggests that fear conditioning is not only accompanied by potentiation of amygdalopetal pathways conveying the CS(+) but also by the depression of sensory inputs unpaired to noxious stimuli.  相似文献   

12.
Glucocorticoid receptor activation within the basolateral amygdala (BLA) during fear conditioning may mediate enhancement in rats chronically exposed to stress levels of corticosterone. Male Sprague-Dawley rats received corticosterone (400 microg/ml) in their drinking water (days 1-21), a manipulation that was previously shown to cause hippocampal CA3 dendritic retraction. Subsequently, rats were adapted to the fear conditioning chamber (day 22), then trained (day 23), and tested for conditioned fear to context and tone (day 25). Training consisted of two tone (20s) and footshock (500 ms, 0.25 mA) pairings. In Experiment 1, muscimol (4.4 nmol/0.5 microl/side), a GABAergic agonist, was microinfused to temporarily inactivate the BLA during training. Rats given chronic corticosterone showed enhanced freezing to context, but not tone, compared to vehicle-supplemented rats. Moreover, BLA inactivation impaired contextual and tone conditioning, regardless of corticosterone treatment. In Experiment 2, RU486 (0, 0.3, and 3.0 ng/0.2 microl/side) was infused on training day to antagonize glucocorticoid receptors in the BLA. Corticosterone treatment enhanced fear conditioning to context and tone when analyzed together, but not separately. Moreover, RU486 (3.0 ng/side) selectively exacerbated freezing to context in chronic corticosterone-exposed rats only, but failed to alter tone conditioning. Serum corticosterone levels were negatively correlated with contextual, not tone, conditioning. Altogether, these suggest that chronic corticosterone influences fear conditioning differently than chronic stress as shown previously. Moreover, chronic exposure to corticosteroids alters BLA functioning in a non-linear fashion and that contextual conditioning is influenced more than tone conditioning by chronic corticosterone and BLA glucocorticoid receptor stimulation.  相似文献   

13.
In two experiments we examined factors that contribute to retarded emergence of conditioned responding to a conditioned stimulus (CS) trained in a context in which unsignaled unconditioned stimuli (USs) had previously been administered. In both experiments water-deprived rats were used in a conditioned lick suppression task to measure the conditioned response elicitation potential of the CS and the training context. From Experiment 1 we determined that nonreinforced exposure to the excitatory context after US preexposure and prior to CS-US pairings in that context eliminated the conditioned response deficit observed on a subsequent test of the CS. The recovery from the US preexposure deficit was nearly as great in animals that received nonreinforced exposure to the excitatory training context after the CS-US pairings but prior to the ultimate test of the CS. From Experiment 2 we determined that the recovery induced by contextual deflation after CS training was specific to deflation of the context in which the CS was trained as opposed to another excitatory context. In total, these experiments suggest that context-US associations partially mask the expression of a learned CS-US association. These results are discussed in terms of recent models of conditioned response generation.  相似文献   

14.
There is a growing body of evidence that the hippocampus is critical for context-dependent memory retrieval. In the present study, we used Pavlovian fear conditioning in rats to examine the role of the dorsal hippocampus (DH) in the context-specific expression of fear memory after extinction (i.e., renewal). Pre-training electrolytic lesions of the DH blunted the expression of conditional freezing to an auditory conditional stimulus (CS), but did not affect the acquisition of extinction to that CS. In contrast, DH lesions impaired the context-specific expression of extinction, eliminating the renewal of fear normally observed to a CS presented outside of the extinction context. Post-extinction DH lesions also eliminated the context dependence of fear extinction. These results are consistent with those using pharmacological inactivation of the DH and suggest that the DH is required for using contextual stimuli to regulate the expression of fear to a Pavlovian CS after extinction.  相似文献   

15.
The present experiments demonstrated that in the rabbit (Oryctolagus cuniculus) nictitacing-membrane (NM) preparation, exposure to the experimental apparatus produces profound declines in conditioned responding to a discrete conditioned stimulus (CS; Experiments 1, 2A, and 3). Moreover, this decremental effect is at most attenuated in only a minor way when the unconditioned stimulus (US) is presented during exposure to the apparatus (Experiment 2B). Controls for retention loss (Experiments 1 and 3) and for handling and placement in a different context (Experiment 3) did not produce significant declines in responding. These findings challenge theories of extinction that rely primarily on context-US associations but are more consistent with theories that assume context-CS-US associations.  相似文献   

16.
Three autoshaping experiments, using pigeon subjects, examined the effect of presenting an S+ or an S- on acquisition to a different conditioned stimulus (CS). Experiment 1 found that signalling intertrial food with an S+ or an S- allowed acquisition of responding to the target-CS; however, that acquisition was slower when the signal was the S+. Experiment 2 found that even when the S+ or S- were presented without food in the intertrial interval, acquisition was slower in the group receiving the S+. Experiment 3 found that a similar, but weaker effect occurred when the S+ or S- stimuli were presented in the session prior to target-CS training, rather than intermixed. These results have implications for the interpretation of experiments that use a signalling manipulation to assess the interaction of CS and context in Pavlovian conditioning; they suggest that signalling unconditioned stimuli (USs) may have consequences other than that of modulating context-US learning.  相似文献   

17.
The basolateral amygdala's involvement in fear acquisition and expression to visual and auditory stimuli is well known. The involvement of the basolateral and other amygdala areas in fear acquisition and expression to stimuli of other modalities is less certain. We evaluated the contribution of the basolateral and medial amygdala to olfactory and to context fear and fear conditioning by infusing into these areas the NMDA receptor antagonist AP5, the AMPA/kainate receptor antagonist NBQX, or vehicle prior to either odor-shock pairings or fear-potentiated startle testing. Pre-training AP5 infusions into the basolateral amygdala disrupted fear conditioning to the odor but not the context conditioned stimulus (CS). Pre-test NBQX infusions disrupted fear-potentiated startle to the odor but not context CS. Neither compound blocked fear conditioning when infused into the medial amygdala prior to training, but pre-test NBQX infusions did block fear-potentiated startle. The results confirm and extend recent findings suggesting a role for the basolateral amygdala in olfactory fear and fear conditioning, reveal an unexpected dissociation of the basolateral amygdala's involvement in discrete cue versus context fear and fear conditioning, and implicate for the first time the medial amygdala in fear-potentiated startle.  相似文献   

18.
Pavlovian fear conditioning is a robust and enduring form of emotional learning that provides an ideal model system for studying contextual regulation of memory retrieval. After extinction the expression of fear conditional responses (CRs) is context-specific: A conditional stimulus (CS) elicits greater conditional responding outside compared with inside the extinction context. Dorsal hippocampal inactivation with muscimol attenuates context-specific CR expression. We have previously shown that CS-elicited spike firing in the lateral nucleus of the amygdala is context-specific after extinction. The present study examines whether dorsal hippocampal inactivation with muscimol disrupts context-specific firing in the lateral amygdala. We conditioned rats to two separate auditory CSs and then extinguished each CS in separate and distinct contexts. Thereafter, single-unit activity and conditional freezing were tested to one CS in both extinction contexts after saline or muscimol infusion into the dorsal hippocampus. After saline infusion, rats froze more to the CS when it was presented outside of its extinction context, but froze equally in both contexts after muscimol infusion. In parallel with the behavior, lateral nucleus neurons exhibited context-dependent firing to extinguished CSs, and hippocampal inactivation disrupted this activity pattern. These data reveal a novel role for the hippocampus in regulating the context-specific firing of lateral amygdala neurons after fear memory extinction.  相似文献   

19.
Conditioned odor aversion (COA) is the avoidance of an odorized-tasteless solution (the conditioned stimulus, CS), the ingestion of which precedes toxicosis. Previous works have shown that the basolateral nucleus of the amygdala (BLA) is involved in the acquisition, and more precisely, the control of the CS memory trace, of COA. Since catecholamine depletion of the amygdala induced a deficit in the potentiated version of COA, this study investigated the role of the adrenergic system in the BLA during COA. Male Wistar rats bilaterally implanted with cannulae aimed at the BLA were microinjected with the beta-adrenergic antagonist propranolol (1 microg/0.2 microl) during the acquisition (5 min before the CS presentation, pre-CS, or immediately after, post-CS) or during the retrieval test (5 min before test, pre-test). Results showed that pre-CS, but neither post-CS nor pre-test, infusions of propranolol impaired COA, suggesting that beta-adrenergic system activity in the BLA is involved in the acquisition but not the expression of COA. Moreover, the fact that pre-CS, but not post-CS, treatment disrupted COA suggests that beta-adrenergic system in the BLA is involved in the initiation but not the maintenance of the CS memory trace during COA acquisition.  相似文献   

20.
In three experiments we investigated the effects of aversive-conditioning components on the reactivity of rats to pain. After training in Experiment 1 with a discrete conditioned stimulus (CS) for a shock unconditioned stimulus (US), different groups were exposed to the CS, US, CS/Us compound, just the training context, or none of those immediately prior to a hot-plate test assessing the latency of a paw-lick response. Relative to no exposure and context alone, the CS produced a shorter latency--that is, an apparent sensitization effect--whereas the US produced a longer latency--that is, a hypoalgesic effect--that was actually augmented by the CS/US compound. Furthermore, whereas the US-induced hypoalgesia was unaffected by the opiate antagonist, naloxone, hypoalgesia produced by the CS/US compound was appreciably decremented by the drug. Experiment 2 showed the same effects with parameters more typical of conditioning research. Experiment 3 compared signals for the presence (CS+) and absence (CS-) of the US. The CS- did not itself affect pain reactivity, but in inhibited the effects of the CS+, US, and CS+/US compound. Collectively, the results suggest that a CS+sensitizes the animal to imminent events and also potentiates an opioid reaction that supplants the less effective nonopioid hypoalgesia induced by the US. In contrast, a CS- functions as a general moderator of excitation, inhibiting both sensitization and hypoalgesic effects, whether opioid or nonopioid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号