首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On the basis of lesions of different brain areas, several neural systems appear to be important for processing information regarding different types of learning and memory. This paper examines the development of pharmacological and neurochemical approaches to multiple memory systems from past studies of modulation of memory formation. The findings suggest that peripheral neuroendocrine mechanisms that regulate memory processing may target their actions toward those neural systems most engaged in the processing of learning and memory. In addition, measurements of acetylcholine release in different memory systems reveals extensive interactions between memory systems, some cooperative and some competitive. These results imply that many neural systems, often characterized as relatively independent, may in fact interact extensively, blurring the dependencies of different memory tasks on specific neural systems.  相似文献   

2.
Category learning and multiple memory systems   总被引:4,自引:0,他引:4  
Categorization is a vitally important skill that people use every day. Early theories of category learning assumed a single learning system, but recent evidence suggests that human category learning may depend on many of the major memory systems that have been hypothesized by memory researchers. As different memory systems flourish under different conditions, an understanding of how categorization uses available memory systems will improve our understanding of a basic human skill, lead to better insights into the cognitive changes that result from a variety of neurological disorders, and suggest improvements in training procedures for complex categorization tasks.  相似文献   

3.
4.
This article presents a critical evaluation of the logic and nature of the neuropsychological dissociation evidence that has provided one of the essential lines of support for claims of multiple memory systems--specifically, suggesting that amnesia selectively compromises, and an intact hippocampal system selectively supports, a particular form of memory. An analysis of the existing neuropsychological dissociation evidence is offered in which different classes of evidence--different dissociation approaches-are identified and characterized. The logic of these neuropsychological dissociation approaches is evaluated critically in terms of their ability to distinguish among alternative theoretical views. We conclude that although they support a multiple memory systems account, the findings from these types of neuropsychological dissociation, taken individually and without support from other converging lines of cognitive neuroscience evidence, cannot definitively rule out alternative formulations. A more powerful neuropsychological dissociation approach is then outlined, involving dissociation within condition, that, by more effectively limiting the critical domains of difference between the dissociated performances, can successfully rule out alternative accounts. Its application in Ryan, Althoff, Whitlow, and Cohen (2000) is described, providing strong support for the power of the dissociation within condition approach.  相似文献   

5.
6.
It is currently controversial whether priming on implicit tasks and discrimination on explicit recognition tests are supported by a single memory system or by multiple, independent systems. In a Psychological Review article, Berry and colleagues used mathematical modeling to address this question and provide compelling evidence against the independent-systems approach.  相似文献   

7.
Four of five patients with marked global amnesia, and others with new learning impairments, showed normal processing facilitation for novel stimuli (nonwords) and/or for familiar stimuli (words) on a word/nonword (lexical) decision task. The data are interpreted as a reflection of the learning capabilities of in-line neural processing stages with multiple, distinct, informational codes. These in-line learning processes are separate from the recognition/recall memory impaired by amygdalohippocampal/dosomedial thalamic damage, but probably supplement such memory in some tasks in normal individuals. Preserved learning of novel information seems incompatible with explanations of spared learning in amnesia that are based on the episodic/semantic or memory/habit distinctions, but is consistent with the procedural/declarative hypothesis.  相似文献   

8.
In addition to modulating memory per se, estrogen alters the learning strategy used to solve a task, thereby regulating the quality of information processed by the brain. This review discusses estrogen's actions on cognition within a memory systems framework, highlighting our work with a variety of paradigms showing that learning strategy is sensitive to estrogen even when learning rate is not. Specifically, high levels of gonadal steroids, in particular, elevations in estrogen, bias female rats toward using hippocampal-sensitive approaches while low levels of gonadal steroids promote the use of non-hippocampal sensitive strategies. In light of findings from a variety of approaches involving the hippocampus in allocentric and the striatum in egocentric response patterns, it is likely that estrogen alters the relative participation of these, and most undoubtedly other, neural systems during cognition. Changes in neuromodulators such as acetylcholine that regulate other processes such as inhibitory tone and excitability reflect one mechanism by which estrogen may orchestrate learning and memory.  相似文献   

9.
Rats were trained to run a straight-alley maze for an oral cocaine or sucrose vehicle solution reward, followed by either response or latent extinction training procedures that engage neuroanatomically dissociable “habit” and “cognitive” memory systems, respectively. In the response extinction condition, rats performed a runway approach response to an empty fluid well. In the latent extinction condition, rats were placed at the empty fluid well without performing a runway approach response. Rats trained with the sucrose solution displayed normal extinction behavior in both conditions. In contrast, rats trained with the cocaine solution showed normal response extinction but impaired latent extinction. The selective impairment of latent extinction indicates that oral cocaine self-administration alters the relative effectiveness of multiple memory systems during subsequent extinction training.Understanding the psychological and neural mechanisms underlying the acquisition and extinction of drug-seeking behavior has important implications for therapies targeting drug addiction. A better understanding of the neurobiology of extinction can potentially allow for the development of treatments to produce more effective and persistent extinction learning. Dissociable hippocampus-dependent “cognitive” and dorsal striatal-dependent “habit” memory systems are engaged during the initial acquisition of learned behavior (for reviews, see Packard and Knowlton 2002; White and McDonald 2002; Squire 2004). Interestingly, recent evidence indicates that multiple memory systems can also be engaged during the new learning that occurs during behavioral extinction (Gabriele and Packard 2006). For example, the behavior of a rat trained to traverse a straight-alley runway for a food reward can be extinguished using either habit/response or cognitive/latent extinction training procedures. During response extinction, rats are allowed to perform the runway approach response to an empty food cup. In contrast, during latent extinction, rats are placed at the empty food cup without performing the runway approach response. Consistent with evidence indicating a selective role for the hippocampus in cognitive memory, neural inactivation of this brain structure impairs latent extinction and spares response extinction (Gabriele and Packard 2006). Moreover, consistent with evidence that the dorsal striatum selectively mediates habit memory (for review, see Packard and Knowlton 2002), neural inactivation of this brain region impairs response extinction and spares latent extinction (A. Gabriele and M.G. Packard, unpubl.).The transition from initial drug use to eventual addiction may involve, at least in part, the development of compulsive drug-seeking and drug-taking behaviors that are increasingly guided by dorsal striatal-dependent habit learning mechanisms (for reviews, see White 1996; Everitt et al. 2001; Everitt and Robbins 2005; Belin et al. 2008). This hypothesis raises the possibility that once “habit-like” drug-seeking behaviors are firmly acquired, the extinction of such behaviors may be differentially influenced by engaging habit and cognitive memory systems. In the present study, we examined this idea by comparing the relative effectiveness of response and latent extinction training procedures in rats trained to run a straight-alley maze for an oral cocaine reward. Consistent with criteria considered important for demonstrating drug dependence, oral cocaine self-administration produces withdrawal following forced abstinence (Barros and Miczek 1996) and additionally is resistant to reinforcer devaluation (Miles et al. 2003), indicating that this behavior becomes divorced from its consequences in a manner similar to the dorsal striatum-mediated compulsive drug-seeking behavior that may characterize addiction (for reviews, see White 1996; Everitt et al. 2001; Everitt and Robbins 2005; Belin et al. 2008).The apparatus was an elevated (86.4 cm) straight-alley maze with a black Plexiglas floor and clear Plexiglas sides (117.8 cm long, 11.4 cm wide, and 20.3 cm tall). A fluid cup (2.5-cm diameter) was located at the goal end of the maze. The maze was located in a room containing several extra-maze cues.Subjects were 32 adult male Long-Evans rats (275–300 g). Rats were individually housed on a 12:12-h light–dark cycle, with lights on from 8:00 a.m.–8:00 p.m. All animals received food ad libitum.During all behavioral procedures, water bottles were removed from home cages 24 h prior to training, and animals received 15 min/day access to water following each day''s procedures. Training began with 3 d of habituation to the solution to be used during training (cocaine–sucrose [0.1% cocaine HCl/20% sucrose in ddH20] or sucrose [20% in ddH20] alone). Each habituation day involved presentations of 0.5 mL of the solution in a novel environment consisting of a half-white, half-black box (41.9 cm long, 31.8 cm wide, 35.6 tall) with the fluid cup located in the center of the black side. The number of presentations increased with each habituation day (1, 2, and 4). Each individual presentation had a maximum time of 20 min, and rats were removed when the solution was consumed. Volume consumed and amount of time to consume the solution were recorded for each rat. Each sucrose rat was matched to a cocaine rat to ensure that there were no differences between groups in terms of volume of solution consumed prior to training. For each matched pair, the volume consumed by the rat receiving the cocaine solution during each presentation was measured, and an identical amount was made available to the matched sucrose animal. If, during any given presentation, the cocaine animal did not consume any solution, then the matched sucrose animal received 20 min in the habituation environment with no solution present.Behavioral procedures were similar to those of our previous study using food reward (Gabriele and Packard 2006). During maze training, animals received either the cocaine–sucrose solution or sucrose vehicle solution reward. On days 1–10 of solution-rewarded maze training (six trials per day), rats were placed in the start end and allowed to traverse the maze and drink the available reward solution (0.5 mL). Upon consuming the solution, rats were removed from the maze and placed in an opaque holding box adjacent to the maze for a 30-sec intertrial interval. On each trial, the latency (in seconds) to reach the fluid cup was recorded and used as the measure of task acquisition. If a rat failed to reach the fluid cup within 60 sec, it was removed for the intertrial interval and a latency of 60 sec was recorded.Twenty-four hours following the completion of training (i.e., day 11), rats were assigned to one of two extinction conditions; latent extinction (n = 18, 10 cocaine and eight sucrose) or response extinction (n = 14, seven cocaine and seven sucrose). For both the latent and response conditions, extinction training was administered over 3 d (six trials per day, 30-sec intertrial interval) with no reward solution present. In the latent extinction condition, rats were placed facing the empty fluid cup in the goal end of the maze and were confined for 60 sec by placement of a clear Plexiglas barrier 20 cm from the rear wall of the goal end of the maze. Following confinement, rats were removed from the maze and placed in the holding box for the 30-sec intertrial interval. In the response extinction condition, rats were placed into the start end of the maze as during training and allowed to run to an empty fluid cup at the goal end of the maze. Upon reaching the empty fluid cup and being allowed to discover its emptiness (or after 60 sec if the rat did not reach the reward cup), rats were removed from the maze and placed in the holding box for the 30-sec intertrial interval. Latency to reach the fluid cup was recorded and used as the measure of extinction behavior. On day 3 of extinction, 90 min following the sixth daily extinction trial, all rats were given an additional four extinction “probe” trials in which they were placed in the start end of the maze and latency to reach the empty fluid cup was recorded. These four trials allowed for an assessment of the effectiveness of each extinction procedure.Data from the runway acquisition sessions are presented in Figure 1. A two-way one-repeated-measure ANOVA (Group [cocaine vs. sucrose] × Session) comparing the latencies to reach the fluid cup during acquisition in rats that subsequently received latent extinction revealed a significant effect of Session (F(9,16) = 61.03, P < 0.001), indicating that latency to reach the fluid cup during acquisition decreased across sessions. However, the absence of a main effect of Group (F(1,16) = 1.94, n.s.) or interaction between Group and Session (F(9,16) = 0.53, n.s.) indicates that rats trained to run for cocaine and sucrose acquired the task at similar rates (Fig. 1A). Similar results were observed in rats that subsequently received response extinction (Fig. 1B) in that there was a main effect of Session (F(9,12) = 13.11, P < 0.001) but no main effect (F(1,12) = 0.44, n.s.) or interaction (F(9,12) = 1.50, n.s.) involving drug Group.Open in a separate windowFigure 1.Acquisition of maze runway behavior. (A) Acquisition of maze runway behavior by rats that subsequently received latent extinction. (B) Acquisition of maze runway behavior by rats that subsequently received response extinction. Mean ± SEM of latency (in seconds) to reach the solution cup over training days. For both extinction conditions, there were no group differences in the initial acquisition of runway behavior.The effects of oral cocaine self-administration on latent and response extinction are shown in Figure 2. A two-way ANOVA (Group × Extinction condition) comparing mean runway latencies (collapsed across the four probe trials) for each group revealed a significant main effect of Extinction condition (F(1,28) = 32.440, P < 0.001), indicating that the response extinction procedures produced greater extinction of the runway response, and a significant interaction effect between Extinction condition and Group (F(1,28) = 4.813, P < 0.05) but no effect of Group (F(1,28) = 0.96, n.s.). Simple effects tests showed a significant effect of Group within the latent extinction condition (F(1,16) = 5.688, P < 0.05) but not the response extinction condition (F(1,12) = 0.663, n.s.), indicating that oral cocaine self-administration selectively impaired latent but not response extinction. Additionally, a two-way one-repeated-measure ANOVA (Group × Trial) computed on the latencies to reach the fluid cup during response extinction training revealed a main effect of Trial (F(2,12) = 16.44, P < 0.001), but no significant main effect (F(1,12) = 2.27, n.s.) or interaction (F(2,12) = 0.88, n.s.) involving Group, further indicating that oral cocaine did not impair response extinction.Open in a separate windowFigure 2.Effects of oral cocaine self-administration on extinction. The effect of oral cocaine self-administration on runway latent and response extinction. Mean ± SEM latency (in seconds) to reach the fluid cup is shown over the four extinction probe trials. Oral cocaine self-administration impaired latent extinction, but did not impair response extinction.The present experiments investigated the effect of oral cocaine self-administration on response and latent extinction in a straight-alley maze. Following training, rats in the response extinction condition performed the approach response to an empty goal box, whereas rats in the latent extinction condition were placed in the goal box with no reward present. Consistent with previous studies using food reward (e.g., Seward and Levy 1949; Gabriele and Packard 2006), rats rewarded with a sucrose solution were able to extinguish the approach response following both response and latent extinction procedures. In contrast, rats rewarded with a cocaine solution displayed normal response extinction (see also Schoenbaum and Setlow 2005) but impaired latent extinction. The selective impairing effect of oral cocaine self-administration on latent extinction indicates that the drug does not impair processes that contribute to general maze behavior (e.g., motivational, motor, or sensory processes), as any such influence would also likely produce a deficit in response extinction.Previous findings indicate that latent extinction of runway behavior is hippocampus dependent, whereas response extinction is dorsal striatal dependent (Gabriele and Packard 2006; A. Gabriele and M.G. Packard, unpubl.). In view of evidence that the hippocampus and dorsal striatum mediate cognitive and habit learning mechanisms, respectively (for reviews, see Packard and Knowlton 2002; White and McDonald 2002; Squire 2004), the findings suggest that oral cocaine self-administration can affect the relative use of multiple memory systems during extinction learning. The medial prefrontal cortex and basolateral amygdala have been implicated in extinction of several forms of learned behavior, and prior cocaine exposure can impair some forms of extinction learning (Burke et al. 2006; Peters et al. 2008; Quirk and Mueller 2008). However, neural inactivation of medial prefrontal cortex or basolateral amygdala does not affect latent extinction of maze runway behavior (A. Gabriele and M.G. Packard, unpubl.), suggesting that cocaine-induced dysfunction of these structures does not account for the results observed here.One explanation of the cocaine-induced impairment of latent extinction is that the approach response acquired during task acquisition is guided by a supra-normal stimulus-response habit, thereby rendering cognitive learning mechanisms ineffectual during latent extinction training. Consistent with this possibility, drug-seeking behaviors underlying addiction may involve, at least in part, a transition from goal-directed behaviors to habitual behaviors that characterize the function of the dorsal striatal memory system (e.g., Tiffany 1990; White 1996; Packard 1999; Everitt et al. 2001; Porrino et al. 2004; Everitt and Robbins 2005; Belin et al. 2008). Indeed, recent evidence implicates the dorsal striatum in habitual drug-seeking behaviors. For example, intradorsal striatum administration of dopamine antagonists impairs cocaine seeking (Vanderschuren et al. 2005), and inactivation of the dorsal striatum attenuates drug seeking, following both abstinence and extinction (Fuchs et al. 2006; See et al. 2007). Interestingly, disconnection between the ventral and dorsolateral striatum impairs cocaine-seeking behavior (Belin and Everitt 2008), and extended cocaine use enhanced cue-selective firing in the dorsal striatum and reduced cue-selective firing in the ventral striatum in go/no go discrimination learning, indicating an accelerated shift to dorsolateral striatal control (Takahashi et al. 2007). In addition, dopamine release increases in the dorsal striatum of rats following presentation of a response-contingent cue associated with cocaine (Ito et al. 2002). Similar results from fMRI and PET studies of human cocaine addicts showed increased activation in the dorsal striatum (Garavan et al. 2000) and an increase in dopamine release within the dorsal striatum (Volkow et al. 2006) following cue-induced cravings.A second explanation of the cocaine-induced impairment in latent extinction is that drug intake during task acquisition may have affected hippocampal physiology in a manner that negatively impacted the hippocampus-dependent learning that subsequently mediates latent extinction. Consistent with this possibility, chronic cocaine exposure impairs subsequent performance of hippocampus-dependent tasks such as the Morris water maze and the win-shift radial arm maze task (Melnick et al. 2001; Quirk et al. 2001; Mendez et al. 2008). However, it should be noted that the impairments observed in the latter studies were observed following exposure to cocaine doses considerably higher than those used in the present oral self-administration study. Since the current experiments do not explicitly examine the potential neurobiological progression underlying the acquisition of runway responding, further research is necessary to determine whether the cocaine-induced impairment of latent extinction involves the interfering effect of a supra-normal response habit, or a direct impairing effect on hippocampal physiology. It should also be noted that both oral cocaine self-administration and a passive cocaine administration regimen produce results analogous to those presented here, in that they impair “cognitive” representations of rewards (Miles et al. 2003; Schoenbaum and Setlow 2005). However, the relationship between this type of cognitive reward representation (mediated by interactions between basolateral amygdala and orbitofrontal cortex) (Pickens et al. 2003) and cognitive representations in latent extinction mediated by the hippocampus (Gabriele and Packard 2006) is currently unclear.Finally, the selective impairing effect of cocaine self-administration on latent extinction may have implications for understanding the persistent ability of drug-predictive cues and contexts to compel drug-seeking behavior and relapse. Specifically, if the ability to use cognitive learning mechanisms to extinguish drug-seeking behaviors is impaired following the transition from initial to habitual and compulsive drug use, then contextual/relational cues might be expected to maintain greater control over behavior following extinction training. This in turn might suggest that incorporation of response extinction procedures into treatment strategies might provide greater therapeutic efficacy.  相似文献   

10.
Gerken L 《Cognition》2006,98(3):B67-B74
Two experiments presented infants with artificial language input in which at least two generalizations were logically possible. The results demonstrate that infants made one of the two generalizations tested, the one that was most statistically consistent with the particular subset of the data they received. The experiments shed light on how learners might go about solving the induction problem for human language.  相似文献   

11.
The basolateral amygdala modulates the cognitive and habit memory processes mediated by the hippocampus and caudate nucleus, respectively. The present experiments used a plus-maze task that can be acquired using either hippocampus-dependent "place" learning or caudate-dependent "response" learning to examine whether peripheral or intra-basolateral amygdala injection of anxiogenic drugs would bias rats towards the use of a particular memory system. In Experiment 1, adult male Long-Evans rats were trained to swim from the same start point to an escape platform located in a consistent goal arm, and received pre-training peripheral injections of the alpha(2)-adrenoceptor antagonists yohimbine (2.5 or 5.0 mg/kg), RS 79948-197 (0.05, 0.1, or 0.2 mg/kg), or vehicle. On a drug-free probe trial from a novel start point administered 24h following acquisition, vehicle treated rats predominantly displayed hippocampus-dependent place learning, whereas rats previously treated with yohimbine (2.5, 5.0 mg/kg) or RS 79948-197 (0.1 mg/kg) predominantly displayed caudate-dependent response learning. In Experiment 2, rats receiving pre-training intra-basolateral amygdala infusions of RS 79948-197 (0.1 microg/0.5 microl) also predominantly displayed response learning on a drug-free probe trial. The findings indicate (1) peripheral injections of anxiogenic drugs can influence the relative use of multiple memory systems in a manner that favors caudate-dependent habit learning over hippocampus-dependent cognitive learning, and (2) intra-basolateral amygdala infusion of anxiogenic drugs is sufficient to produce this modulatory influence of emotional state on the use of multiple memory systems.  相似文献   

12.
Extensive evidence documents emotional modulation of hippocampus-dependent declarative memory in humans. However, little is known about the emotional modulation of striatum-dependent procedural memory. To address how emotional arousal influences declarative and procedural memory, the current study utilized (1) a picture recognition and (2) a weather prediction (WP) task (a probabilistic classification learning task), which have been shown to rely on hippocampal- and striatum-based memory systems, respectively. Observers viewed arousing or neutral pictures after (Experiment 1) or during (Experiment 2) WP training trials. A 1-wk delayed picture recognition memory test revealed enhanced declarative memory for arousing compared with neutral pictures. Arousal during encoding impaired initial WP acquisition but did not influence retention when tested after a 1-wk delay. Data from a subsequent 3-mo delayed test, however, suggested that arousal during acquisition may enhance remote WP retention. These results suggest a potential dissociation between how readily emotional arousal influences hippocampus-dependent and striatum-dependent memory systems in humans.  相似文献   

13.
A common conceptualization of the organization of memory systems in brain is that different types of memory are mediated by distinct neural systems. Strong support for this view comes from studies that show double (or triple) dissociations between spatial, response, and emotional memories following selective lesions of hippocampus, striatum, and the amygdala. Here, we examine the extent to which hippocampal and striatal neural activity patterns support the multiple memory systems view. A comparison is made between hippocampal and striatal neural correlates with behavior during asymptotic performance of spatial and response maze tasks. Location- (or place), movement, and reward-specific firing patterns were found in both structures regardless of the task demands. Many, but not all, place fields of hippocampal and striatal neurons were similarly affected by changes in the visual and reward context regardless of the cognitive demands. Also, many, but not all, hippocampal and striatal movement-sensitive neurons showed significant changes in their behavioral correlates after a change in visual context, irrespective of cognitive strategy. Similar partial reorganization was observed following manipulations of the reward condition for cells recorded from both structures, again regardless of task. Assuming that representations that persist across context changes reflect learned information, we make the following conclusions. First, the consistent pattern of partial reorganization supports a view that the analysis of spatial, response, and reinforcement information is accomplished via an error-driven, or match-mismatch, algorithm across neural systems. Second, task-relevant processing occurs continuously within hippocampus and striatum regardless of the cognitive demands of the task. Third, given the high degree of parallel processing across allegedly different memory systems, we propose that different neural systems may effectively compete for control of a behavioral expression system. The strength of the influence of any one neural system on behavioral output is likely modulated by factors such as motivation, experience, or hormone status.  相似文献   

14.
Epidemiological investigations have revealed increases in the prevalence of sedentary behaviors in industrialized societies. However, the implications of those lifestyle choices and related cardiorespiratory fitness levels for memory function are not well-understood. To determine the extent to which cardiorespiratory fitness relates to the integrity of multiple memory systems, a cross-sectional sample of young adults were tested over the course of 3 days in areas related to implicit memory, working memory, long-term memory, and aerobic fitness. Findings revealed an association between aerobic fitness and memory function such that individuals with lower cardiorespiratory fitness exhibited poorer implicit memory performance and poorer long-term memory retention. These data indicate that cardiorespiratory fitness may be important for the optimal function of neural networks underlying these memory systems.  相似文献   

15.
The acquisition of learned behavior involves multiple memory systems, and hippocampal system damage impairs cognitive learning while leaving stimulus-response habit learning intact. In view of evidence that extinction also involves new learning, the present experiments examined whether multiple memory systems theory may be applicable to the neural bases of extinction. Adult Long-Evans rats were trained to run in a straight-alley maze for food reward. Twenty-four hours later, rats matched for runway latencies during acquisition received extinction training. In a response extinction condition conducive to habit learning, rats performed a runway approach response to an empty food cup. In a latent extinction condition conducive to cognitive learning, rats were placed at an empty food cup without performing a runway approach response. Prior to daily extinction training, neural activity of the dorsal hippocampus was reversibly inactivated via infusion of bupivacaine (0.75%, 0.5 microl/side). Control rats receiving saline infusions displayed extinction behavior in both the response and latent training conditions. In contrast, rats receiving bupivacaine extinguished normally in the response condition, but did not display latent extinction. The findings (1) confirm that learning underlying extinction of the same overt behavior can occur with or without explicit performance of the previously acquired response, (2) indicate that extinction learning produced by response and latent training procedures can be neuroanatomically dissociated, and (3) suggest that similarly to initial task acquisition, the hippocampus may critically mediate extinction in situations requiring the use of cognitive learning, such as when performance of a previously acquired response habit is prevented.  相似文献   

16.
It is proposed that memory is organized into event-based, knowledge-based, and rule-based memory systems. Furthermore, each system is composed of the same set of multiple attributes and characterized by a set of process oriented operating characteristics that are mapped onto multiple neural regions and interconnected neural circuits. Based on this theoretical model of memory, it is possible to investigate the independence and interaction among brain regions between any two systems for any of the proposed attributes or processes. This applies also to the investigation of independence and interactions between any two attributes within a system and between processes associated with a system for any of the proposed attributes. In this article, research evidence is presented to suggest that there are both dissociations and interactions between the hippocampus and caudate nucleus in mediating spatial and response attributes within the event-based memory system, between the hippocampus and the parietal cortex in subserving the spatial attribute within the event-based and knowledge-based memory systems, and between the hippocampus and the prefrontal cortex in subserving the spatial attribute within the event-based and rule-based memory systems.  相似文献   

17.
Links have recently been established between measures of educational attainment and both verbal and visuo-spatial aspects of working memory. Relationships have also been identified between specific executive functions—shifting, updating, and inhibition—and scholastic achievement. In the present study, scholastic attainment, shifting, updating, inhibition, and verbal and visuo-spatial working memory were assessed in 11- and 12-year-old children. Exploratory factor analysis identified two executive factors: one associated with updating functions and one associated with inhibition. Updating abilities were closely linked with performance on both verbal and visuo-spatial working memory span tasks. Working memory was closely linked with attainment in English and mathematics, and inhibition was associated with achievement in English, mathematics, and science. Domain-specific associations existed between verbal working memory and attainment in English, and between visuo-spatial working memory and attainment in English, mathematics and science. Implications of the findings for the theoretical analysis of executive functioning, working memory and children's learning are discussed.  相似文献   

18.
Links have recently been established between measures of educational attainment and both verbal and visuo-spatial aspects of working memory. Relationships have also been identified between specific executive functions—shifting, updating, and inhibition—and scholastic achievement. In the present study, scholastic attainment, shifting, updating, inhibition, and verbal and visuo-spatial working memory were assessed in 11- and 12-year-old children. Exploratory factor analysis identified two executive factors: one associated with updating functions and one associated with inhibition. Updating abilities were closely linked with performance on both verbal and visuo-spatial working memory span tasks. Working memory was closely linked with attainment in English and mathematics, and inhibition was associated with achievement in English, mathematics, and science. Domain-specific associations existed between verbal working memory and attainment in English, and between visuo-spatial working memory and attainment in English, mathematics and science. Implications of the findings for the theoretical analysis of executive functioning, working memory and children's learning are discussed.  相似文献   

19.
Two relatively simple theories of brain function will be used to demonstrate the explanatory power of multiple memory systems in your brain interacting cooperatively or competitively to directly or indirectly influence cognition and behaviour. The view put forth in this mini-review is that interactions between memory systems produce normal and abnormal manifestations of behaviour, and by logical extension, an understanding of these complex interactions holds the key to understanding debilitating brain and psychiatric disorders.  相似文献   

20.
Sexual selection and mating systems profoundly influence the behavior and psychology of animals. Using their own studies of green anacondas (Eunectes murinus) and reviewing other recent studies, the authors conclude that incomplete data derived from a few well-studied snake species have led to general acceptance of polygyny as the dominant mating system in snakes. New data on behavior, paternity, and life history in a diverse taxonomic array of snakes support the view that polyandry is not only common in snakes but may have been the ancestral mating system. This interpretation helps to explain many seemingly paradoxical behavioral differences between lizards and snakes, such as the lack of territorial systems in most snakes and their frequent female-biased sexual size dimorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号