首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
It is known that electromyostimulation (EMS) alone or superimposed over voluntary contraction (EV) can effectively improve muscle strength. However, the effect of this type of training on the ability to control force production at submaximal levels is unknown. The authors examined the effects of EV training on steadiness in force production of knee extensors and flexors in older adults. Forty participants, including 20 men and 20 women, 60–77 years of age, were randomly allocated into a control group (CG) and an electromyostimulation superimposed over voluntary contraction (EVG) group. The EVG performed 30 bilateral isometric knee extension and flexion contractions per session, 3 training sessions per week, for 6 weeks. The variations in force production, expressed in absolute (standard deviation [SD]) and relative (coefficient of variation [CV]) terms, were assessed in isometric contractions at 5%, 15% and 25% maximal voluntary contraction (MVC) levels. Results indicated that MVC increased in knee extension and flexion in EVG (p < .05) after the training; steadiness CV also improved at 15% MVC in knee flexion (p < .05) but no significant changes were found in knee extension and steadiness SD. The training-induced changes in MVC were not correlated to steadiness CV that might indicate different mechanisms underlying these adaptations.  相似文献   

2.
ABSTRACT P. Bezerra, S. Zhou, Z. Crowley, A. Davie, and R. Baglin (2011) suggested that the neural mechanisms responsible for steadiness improvement relate in particular to the discharge behavior of motor units and the practice and learning of skills rather than the strength gain after electromyostimulation superimposed over voluntary training. However, the afferent inputs are determining in control of the force level produced and thus contribute to ensure muscle steadiness. Hence, it is possible that electromyostimulation interferes in neurophysiological afference integration and prevents neural adaptations that enable improvement of the control of force (and then muscle steadiness) to occur. Therefore, the neural adaptations induced by electromyostimulation superimposed onto voluntary training should also be researched in relation to the sensory pathways.  相似文献   

3.
The purpose of this study was to investigate the asymmetry of force fluctuation during isometric knee extension at low and moderate intensities. 11 healthy men (M age = 21 yr., SD = 1) performed unilateral force matching tasks; sustained isometric knee extension at 20% and 30% maximal voluntary contraction (MVC). During the tasks, a mechanomyogram was measured by an accelerometer arrangement placed on the vastus lateralis. Although force fluctuation was not significantly different between the two legs at 20% MVC, it was higher in the left (weaker) leg than in the right (stronger) leg at 30% MVC. A significant difference in mean power frequency of the mechanomyographic signal between the two legs was also observed only at 30% MVC. These results suggest that the asymmetry of force fluctuation during isometric knee extension was not statistically significant at low intensity; however, it was significant at moderate intensity. These differences in force fluctuation between intensities might be influenced by different motor-unit firing rates in active muscle.  相似文献   

4.
The purpose of the author's investigation was to examine the effect of knee joint angle on torque control of the quadriceps muscle group. In all, 12 healthy adults produced maximal voluntary contractions and submaximal torque (15, 30, and 45% MVC [maximal voluntary contraction]) at leg flexion angles of 15°, 30°, 60°, and 90° below the horizontal plane. As expected, MVC values changed with respect to joint angle with maximum torque output being greatest at 60° and least at 15°. During the submaximal tasks, participants appropriately scaled their torque output to the required targets. Absolute variability (i.e., standard deviation) of torque output was greatest at 60° and 90° knee flexion. However, relative variability as indexed by coefficient of variation (CV) decreased as joint angle increased, with the greatest CV occurring at 15°. These results are congruent with the hypothesis that joint angle influences the control of torque.  相似文献   

5.
The visual correction employed during isometric contractions of large proximal muscles contributes variability to the descending command and alters fluctuations in muscle force. This study explored the contribution of visuomotor correction to isometric force fluctuations for the more distal dorsiflexor (DF) and plantarflexor (PF) muscles of the ankle. Twenty-one healthy adults performed steady isometric contractions with the DF and PF muscles both with (VIS) and without (NOVIS) visual feedback of the force. The target forces exerted ranged from 2.5% to 80% MVC. The standard deviation (SD) and coefficient of variation (CV) of force was measured from the detrended (drift removed) VIS and NOVIS steadiness trials. Removal of VIS reduced the CV of force by 19% overall. The reduction in fluctuations without VIS was significant across a large range of target forces and was more consistent for the PF than the DF muscles. Thus, visuomotor correction contributes to the variability of force during isometric contractions of the ankle dorsiflexors and plantarflexors.  相似文献   

6.
IntroductionReduced neural drive is mainly thought to explain the bilateral deficit phenomenon, i.e. the difference in maximal isometric voluntary contraction (MVC) between unilateral and bilateral contractions. The aim of the present study was to further document if bilateral knee extension is associated with changes in voluntary activation level assessed by both peripheral nerve electrical stimulation and transcranial magnetic stimulation.MethodsFourteen subjects performed unilateral and bilateral knee extensions with both superimposed femoral electrical nerve stimulation and transcranial magnetic stimulation in order to assess voluntary activation (VAFNES) and cortical voluntary activation (VATMS), respectively.ResultsThere was no difference in MVC force of the tested leg when involved in unilateral and bilateral knee extensions (p = 0.87). However, a significantly reduced VAFNES (−2.1 ± 2.4%; p = 0.01) and VATMS (−1.6 ± 2.7%; p = 0.04) have been evidenced during bilateral knee extension.DiscussionIt is hypothesized that counterbalances could have masked the decrease of voluntary activation during bilateral contraction.  相似文献   

7.
The accuracy of force perception during muscular contraction has not been studied extensively, despite its importance in rehabilitation and training. The purpose of this study was to quantify the errors made by healthy young and elderly individuals in their perceptions of force produced at the knee. Four different tasks were used to evaluate the perception of force and the effect of a sensory-motor reference and simultaneous contraction on the accuracy of perception. The absolute errors were similar between groups, with values of 11.9% to 16.3%, depending on the task. The raw perception errors were greater for high levels of force (>50% of the maximal voluntary contraction, or MVC), indicating an overestimation of the forces produced for both groups. At 70% MVC, the sensory-motor reference reduced raw perception errors, and the simultaneous contraction improved the accuracy of force production. Healthy young and elderly individuals had about the same capacity to judge the muscular force of their knee extensors. Therapists involved in the training of active?elderly?individuals should be aware that the accuracy of force perception is not perfect and that these clients have the same ability as young individuals to perceive their knee extension strength.  相似文献   

8.
Effect of contraction intensity [100%, 75%, 50%, and 25% maximum voluntary contraction (MVC)] and movement velocity [0 degrees (isometric)], 50 degrees, 100 degrees, 200 degrees, and 400 degrees/sec. [isovelocities]) on root mean square amplitude (SEMG-RMS) and median frequency power spectrum (SEMG-MNF) of vastus lateralis (VL) surface electromyography was investigated with ten healthy female university students. Peak torque (PT), mean torque (MT), SEMG-MNF, and SEMG-RMS, analyzed using separate repeated-measures analyses of variance (p < or = .05), indicated: (1) an inverse relation between PT and MT and movement velocity, (2) greater SEMG-MNF values during all isovelocity conditions compared with isometric conditions, with highest values occurring at 50 degrees /sec. and at 100% and 75% MVC, and (3) at all contraction intensities SEMG-RMS values were higher during dynamic movements than isometric movements and highest at 200 degrees /sec. Isovelocity contractions were inferred to facilitate a greater recruitment of fast-twitch fibers (via increased SEMG-MNF), which was intensified at 50 degrees /sec., whereas greater overall muscle activation was found at 200 degrees /sec.  相似文献   

9.
The aim of this study was to test the effect of fatigue of the knee extensors muscles on bilateral force control accuracy, variability, and coordination in the presence and absence of visual feedback. Twenty-two young physically active subjects (18 males, 4 females) were divided into two groups and performed 210 submaximal sustained bilateral isometric contractions of knee extensors muscles with and without visual feedback. One group performed a symmetrical task—both legs were set at identical positions (60° knee flexion)—while the other group performed an asymmetrical task (60° and 30° knee flexion). We used the framework of the uncontrolled manifold hypothesis to quantify two variance components: one of them did not change total force (VUCM), while the other did (VORT). Performance of bilateral isometric contractions reduced voluntary and electrically induced force without changes in bilateral force control variability and accuracy. Bilateral force production stability and accuracy were higher in both tasks with visual feedback. Synergistic (anti-phase) structure of force control between the lower limbs occurred and the values of synergy index were higher only during the performance of the asymmetrical task with visual feedback. In addition, greater bilateral force control accuracy was observed during the performance of the asymmetrical task (with and without visual feedback), despite no differences in within-trial variability of both tasks.  相似文献   

10.
The gastrocnemius is a biarticular muscle that acts not only as a plantar flexor, but also as a knee flexor, meaning that it is an antagonist during knee extension. In contrast, the soleus is a monoarticular plantar flexor. Based on this anatomical difference, these muscles’ activities should be selectively activated during simultaneous plantar flexion and knee extension, which occur during many activities of daily living. This study examined the selective activation of gastrocnemius and soleus activities when voluntary isometric activation of knee extensors was added to voluntary isometric plantar flexion. Ten male volunteers performed isometric plantar flexion at 10%, 20%, and 30% of maximum effort. During each plantar flexion task, isometric knee extension was added at 0%, 50%, and 100% of maximum effort. When knee extension was added, the average rectified value of the electromyographic activity of the medial gastrocnemius was significantly depressed (P = .002), whereas that of the soleus was significantly increased (P < .001) regardless of the plantar flexion level. These results suggest that plantar flexion with concurrent knee extensor activity leads to selective activation of the soleus and depression of the synergistic activity of the gastrocnemius.  相似文献   

11.
Healthy untrained men (N = 11) were asked to perform 10 series of 12 repetitions of knee eccentric extension (EE) at 160° per second. Quadriceps muscle torques evoked by electrical stimulation at 20 Hz (P20) and 100 Hz (P100), maximal voluntary isometric contraction torque (MVC), maximal isokinetic concentric torque (IT) at 30° per second, voluntary activation index (VA), simple reaction time (RTs), complex reaction time (RTc), and torque variability at 30% of MVC were measured before EE, immediately after EE, and 60 min and 24 hr after EE. MVC, IT, P20, P100, and VA decreased significantly after EE and remained depressed 24 hr later. Torque variability increased significantly after EE. Average RTs and RTc did not change after EE, whereas intraindividual variability in RTs and RTc increased significantly after EE.  相似文献   

12.
We compared the timed latencies of saccadic eye movement during isometric contraction of the bilateral and unilateral shoulder girdle elevators in a sitting posture. Muscle contraction force was increased in 10% increments from 0% to 60% of the maximal voluntary contraction (MVC) of each side. Saccadic latency was measured as the latency to the beginning of eye movement toward the lateral target that was moved at random intervals in 20 degree amplitude jumps. Eye movement was measured using the electro-oculogram technique. During bilateral contraction, saccadic latency decreased until 30% MVC and then began to increase at 40% MVC. During unilateral contraction, saccadic latency decreased until 30% MVC in a similar pattern as in bilateral condition, was constant from 30% MVC to 50% MVC, followed by a slight increase at 60% MVC. The saccadic latencies at 10% and 40-60% MVC were significantly shorter during unilateral contraction than bilateral contraction. Thus, the relative force for producing a marked shortening of saccadic latency is observed within a wider range during unilateral contraction than bilateral contraction.  相似文献   

13.
This study examined muscular activity patterns of extensor and flexor muscles and variability of forces during static and dynamic tracking tasks using compensatory and pursuit display. Fourteen volunteers performed isometric actions in two conditions: (i) a static tracking task consisting of flexion/pronation, ulnar deviation, extension/supination and radial deviation of the wrist at 20% maximum voluntary contraction (MVC), and (ii) a dynamic tracking task aiming at following a moving target at 20% MVC in the four directions of contraction. Surface electromyography (SEMG) from extensor carpi ulnaris, extensor carpi radialis, flexor carpi ulnaris and flexor digitorum superficialis muscles and exerted forces in the transverse and sagittal plane were recorded. Normalized root mean square and mutual information (index of functional connectivity within muscles) of SEMGs and the standard deviation and sample entropy of force signals were extracted. Larger SEMG amplitudes were found for the dynamic task (p < .05), while normalized mutual information between muscle pairs was larger for the static task (p < .05). Larger size of variability (standard deviation of force) concomitant with smaller sample entropy was observed for the dynamic task compared with the static task (p < .01 for both). These findings underline a rescaling of the muscles’ respective contribution influencing force variability relying on feedback and feed-forward control strategies in relation to display modes during static and dynamic tracking tasks.  相似文献   

14.
In an experiment, we examined the effect of intermittency (from 25.6 Hz to 0.2 Hz) of visual information on continuous isometric force production as a function of force level (5%, 10%, 25%, and 50% of maximal voluntary contraction [MVC]). The amount of force variability decreased and the irregularity of force output increased as a function of increased visual intermittency rate. Vision was found to have an influence on the frequency structure of force output up to 12 Hz, and the 25% MVC force level had more high-frequency modulations with higher rates of visual information. The effective use of intermittent visual information is mediated nonlinearly by force level, and there are multiple time scales of visual control (range, approximately 0 - 12 Hz) that are postulated to be a function of both feedback and feedforward control processes.  相似文献   

15.
We aimed to examine the relationship among the muscle shear modulus at rest, maximal joint torque, and rate of torque development (RTD). Twenty-seven participants (28 ± 5 years, 13 women) were recruited in the study. The cross-sectional area (CSA) of the medial gastrocnemius (MG) muscle belly and shear modulus at an ankle joint angle of 0° were calculated using magnetic resonance imaging and ultrasound shear wave elastography, respectively. Subsequently, participants performed maximal isometric plantar flexion at 0° ankle joint angle [maximal voluntary contraction (MVC) test] as fast and hard as possible (RTD test). RTD was calculated from the time–torque curve over time intervals of 0–30, 0–50, 0–100, 0–150, and 0–200 ms from the onset of plantar flexion during the RTD test and was normalized by MVC torque to exclude muscle strength. MG CSA correlated significantly with MVC torque (r = 0.572), whereas MG shear modulus did not. In contrast, MG shear modulus correlated significantly with normalized RTD at all time intervals (r = 0.460–0.496). These results suggest that passive muscle stiffness is not associated with muscle force; however, higher passive muscle stiffness at a given joint angle may contribute to rapid force production.  相似文献   

16.
Abstract

It has been demonstrated that the intended force (subjective estimation of force) does not always match to actual force without external feedback. The purpose of this study was to compare the influence of ballistic and tonic contractions on the relationship between the intended and actual force. Subjects produced isometric force at requested percentages of their MVC (20, 40, 60 and 80%) based on subjective estimation of force under two conditions (tonic and ballistic conditions). The tonic condition was to maintain force production, whereas the ballistic condition was to produce force as fast as possible. As a result, the actual force amplitude, the coefficient of variance and EMG amplitude were larger under the ballistic contraction compared with the tonic condition, even the same intended force levels. These results suggest that different motor unit activity and control systems in the ballistic and tonic contractions could alter the relationship between the intended force and the actual force.  相似文献   

17.
Rehabilitation options to promote neuroplasticity may be enhanced when patients are engaged in motor practice during repetitive transcranial magnetic stimulation (rTMS). Twelve participants completed 3 separate sessions: motor practice, motor practice with rTMS, and rTMS only: motor practice consisted of 30 isometric contractions and subthreshold rTMS was 30, 3-s trains at 10 Hz. Assessments included the Box and Block Test (BBT), force steadiness (10% of the maximum voluntary contraction), and TMS (cortical excitability, intracortical inhibition, and intracortical facilitation). Participants significantly increased BBT scores following the combined condition. Force steadiness improved after all 3 conditions (p < .05). TMS outcomes depended on intervention condition with significant increases in facilitation following the motor practice plus rTMS condition. All interventions influenced motor control, yet are likely modulated differently when combining motor practice plus rTMS. These results help guide the clinical utility of rTMS as an intervention to influence motor control.  相似文献   

18.
In this study, we review existing evidence on the history dependence of skeletal muscle force production. Specifically, we investigate the steady-state forces following shortening or stretching of an activated skeletal muscle preparation and compare these forces to the corresponding steady-state forces obtained for purely isometric contractions at identical lengths. Force depression following shortening and force enhancement following stretch can reach values of almost 50% of the corresponding isometric reference force, and thus might affect movement control. We also show novel results on history-dependent effects for voluntary contractions in human skeletal muscles, thereby emphasizing that voluntary force production is affected by the contractile history of the target muscles. These results lead to the conclusion that history-dependent force production should be considered in models of movement control and voluntary force production.  相似文献   

19.
The authors modeled variability of force during continuous isometric contractions of the quadriceps femoris. Twenty adults (aged 25 +/- 6 years old) performed isometric leg extensions. Target forces were 11 percentages of maximum voluntary contraction (%MVC), ranging from 2 to 95%, and 5 absolute levels, from 25 to 225 N. The authors used standard deviation of absolute force, coefficient of variation, and signal-to-noise ratio as measures of variability. The results suggested a nonlinear relationship between variability and level of force, which could best be expressed as %MVC and not as absolute force. Variability for continuous isometric contractions was described best by a sigmoidal logistic function. The sigmoidal pattern of variability as a function of %MVC is consistent with physiological mechanisms.  相似文献   

20.
The influence of different positions of the nonperforming (idle) fingers on the maximal force contraction of flexion (master) fingers during key pressing tasks was investigated. Ten participants performed maximal voluntary flexion contractions with various combinations of the index, middle, ring, and little fingers while the idle fingers rested on or were lifted away from the supporting surface. The effect of idle finger posture on total finger force production of master fingers was dependent on finger combination. In general, force production by master fingers was higher when the idle fingers were lifted away from the supporting surface than when they rested on it. The average increase in total force production by master fingers caused by the lifting of idle fingers was +12.4% (from -8.3% to +30.2%). Force-production capability of individual master fingers can be facilitated (as high as 34.1%), unchanged, or depressed (as high as -29.0%) by lifting the idle fingers. The effect of idle finger posture on finger force production of master fingers led to changes in force deficit. Neural, anatomical, and mechanical factors might account for the dependence of finger flexion force of master fingers on the posture of the idle fingers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号