首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Corticotropin-releasing factor (CRF) is a potent neuromodulator of stress-related behaviour but the neural mechanisms underlying these effects are not clear. Studies were designed to test the hypothesis that CRF-induced behavioural arousal involves interactions with brainstem serotonergic systems. To examine interactions between CRF and serotonergic systems in the regulation of behaviour, CRF (1 microg, intracerebroventricular (i.c.v.)) or vehicle was infused in the presence or absence of the selective serotonin re-uptake inhibitor fluoxetine (0, 0.1, 1 or 10 mg/kg, intravenous (i.v.)). Fluoxetine was used at these doses because it is known to decrease serotonin cell firing rates while increasing extracellular serotonin concentrations in select forebrain regions. We then measured behavioural, neurochemical and endocrine responses. CRF increased locomotion and spontaneous non-ambulatory motor activity (SNAMA) in the home cages. Fluoxetine decreased tissue 5-hydroxyindoleacetic acid concentrations, a measure of serotonin metabolism, in specific limbic brain regions of CRF-treated rats (nucleus accumbens shell region, entorhinal cortex, central nucleus of the amygdala). Furthermore, fluoxetine inhibited CRF-induced SNAMA. CRF and fluoxetine independently increased plasma corticosterone concentrations, but the responses had distinct temporal profiles. Overall, these data are consistent with the hypothesis that CRF-induced facilitation of behavioural activity is dependent on brainstem serotonergic systems. Therefore, fluoxetine may attenuate or alleviate some behavioural responses to stress by interfering with CRF-induced responses.  相似文献   

2.
Although acute stress accelerates colonic transit, the effect of chronic stress on colonic transit remains unclear. In this study, rats received repeated restraint stress (chronic homotypic stress) or various types of stress (chronic heterotypic stress) for 5 and 7 days, respectively. Vehicle saline, oxytocin (OXT), OXT receptor antagonist or corticotropin-releasing factor (CRF) receptor antagonists were administered by intracerebroventricular (ICV) injection prior to restraint stress for 90 min. Immediately after the stress exposure, the entire colon was removed and the geometric center (GC) of Na51CrO4 (a nonabsorbable radioactive marker; 0.5 μCi) distribution was calculated to measure the transit. Gene expression of OXT and CRF in the paraventricular nucleus (PVN) was evaluated by in situ hybridization. Accelerated colonic transit with the acute stressor was no longer observed following chronic homotypic stress. This restored colonic transit was reversed by ICV injection of an OXT antagonist. In contrast, chronic heterotypic stress significantly accelerated colonic transit, which was attenuated by ICV injection of OXT and by a CRF receptor 1 antagonist. OXT mRNA expression in the PVN was significantly increased following chronic homotypic stress, but not chronic heterotypic stress. However, CRF mRNA expression in the PVN was significantly increased following acute and chronic heterotypic stress, but not chronic homotypic stress. These results indicate that central OXT and CRF play a pivotal role in mediating the colonic dysmotility following chronic stress in rats.  相似文献   

3.
The medium spiny neurons of the nucleus accumbens receive a unique convergence of dopaminergic and glutamatergic inputs from regions associated with motivational, cognitive, and sensory processes. Long-term forms of plasticity in the nucleus accumbens associated with such processes as appetitive learning and drug addiction may require coactivation of both dopamine D1 and glutamate N-methyl-D-aspartate (NMDA) receptors. This notion implies that an intracellular mechanism is likely to be involved in these long-term neuroadaptive processes. The present series of experiments examined the effects of intra-accumbens microinfusion of protein kinase inhibitors on acquisition of an instrumental task, lever-pressing for food. Male Sprague-Dawley rats were bilaterally implanted with chronic indwelling cannulae aimed at the nucleus accumbens core. Following recovery, animals were food-restricted and subsequently trained for operant responding. The broad-based serine/threonine kinase inhibitor H-7 (5 or 27 nmol per side) dose-dependently impaired learning when infused immediately after testing on days 1-4. Rp-cAMPS, a cAMP-dependent protein kinase (PKA) inhibitor, also impaired learning regardless of whether it was infused immediately before (5 or 20 nmol) or immediately after (10 nmol) testing on days 1-4. Rp-cAMPS (10 nmol) also inhibited learning when infused 1 h after testing, though to a lesser extent than when administered before or immediately after testing. The PKA stimulator Sp-cAMPS (5 or 20 nmol) also impaired learning when infused before testing, suggesting that there is an optimal level of PKA activity required for learning. None of the drugs used produced nonspecific motor or feeding effects. These results provide evidence supporting the involvement of nucleus accumbens PKA in appetitive learning and suggest that this kinase may be involved in long-term changes associated with this and other motivationally based neuroadaptive processes.  相似文献   

4.
5.
Stressor activation of the sympathetic nervous system and the hypothalamic-pituitary-adrenal axis can have profound effects on bone and also appetite and metabolism. We tested in rats the response of plasma osteocalcin (pOC, a bone biomarker that is acutely stress responsive), corticosterone, and leptin to (1) ethanol consumption (5% w/v) in a liquid diet (compared with ad libitum and pair-fed rats), (2) acute restraint, and (3) acute (once, 1 h) and (4) chronic (1 h/day for 7 weeks) social aggression. Basal pOC concentration did not differ with ethanol diet or social interaction, but was elevated by both foot restraint immobilization (Imo) and restraint in wire mesh cylinders (WMR). As previously reported for chronic Imo, ingestion of ethanol blunted the pOC response to Imo. Plasma corticosterone concentration was increased by acute WMR and acute social interaction but was unaltered by chronic social interaction. Plasma leptin concentration was markedly increased by Imo in ad libitum fed, but only slightly in ethanol or pair-fed rats. In contrast, the data reflect significant differences between acute and chronic stressor effects since chronic social stress had little effect on pOC or plasma corticosterone, but tended to decrease leptin level in relation to dominance. Lack of significant impact of prolonged ethanol intake or social aggression suggests physiological adaptation.  相似文献   

6.
Corticotropin-releasing factor (CRF) and arginine vasopressin (AVP) play a central role in regulating the stress response. In response to stress, CRF and AVP neurons in the hypothalamic paraventricular nucleus secrete the peptides to stimulate the release of adrenocorticotropic hormone from the anterior pituitary. Ghrelin, an endogenous ligand of the growth hormone-releasing peptide receptors (GHSR), has been shown to stimulate the release of CRF and AVP by rat hypothalamic explants. However, little is known about the ability of the ghrelin signaling pathways to activate the CRF and AVP genes in the hypothalamus. In the present study, we examined the direct effect of ghrelin on CRF and AVP gene expression in hypothalamic 4B cells, which show the characteristics of the hypothalamic parvocellular paraventricular nucleus neurons. Cells were transfected with CRF or AVP promoter to examine the activity of each promoter. Ghrelin stimulated the promoter activities and mRNA levels for both CRF and AVP. The involvement of a protein kinase pathway was examined using inhibitors. Protein kinase A and phospholipase C pathways were shown to be involved in ghrelin-induced increases in both CRF and AVP promoter activities. GHSR type 1a (GHSR1a) mRNA levels were also increased by ghrelin, and these ghrelin-induced levels were suppressed by a GHSR1a antagonist. Thus, ghrelin-dependent pathways are involved in the regulation of CRF and AVP gene expression in the hypothalamus: ghrelin, an orexigenic hormone, stimulates CRF, an anorexigenic/anxiogenic factor in the hypothalamus, resulting in hypothalamic-pituitary-adrenal axis activation to stimulate the release of glucocorticoids.  相似文献   

7.
The authors fed rats 1 of 2 distinctively flavored, roughly equipalatable diets for 3 days then offered them an ad libitum choice between the 2 diets. For 3 days, subjects exhibited a reduced relative intake of whichever diet they had previously eaten (Experiment 1). Such reduction in relative intake was as effective as a toxicosis-induced conditioned aversion in determining subjects' food choices (Experiment 2). The strength of exposure-induced reduction in relative intake did not depend on similarity of the 2 diets offered for choice either to each other or to subjects' maintenance diet (Experiment 3) but did require continuous exposure to a diet (Experiment 4). These experiments provide the first evidence of a robust, exposure-induced decrease infood preference in rats lasting for days rather than minutes.  相似文献   

8.
Body weight and response acquisition with delayed reinforcement.   总被引:3,自引:3,他引:0       下载免费PDF全文
The relation between body weight and responding established with unsignaled delayed reinforcement was investigated. In three experiments, naive rats were deprived to either 70%, 80%, or 90% of ad libitum weight and were then exposed to tandem variable-interval 15-s differential-reinforcement-of-other-behavior 30-s schedules. The tandem schedule defined a resetting unsignaled delay-of-reinforcement procedure. In the first experiment, speed of magazine training, acquisition of lever pressing, and final rate of lever pressing were related to body weight. In the next experiment, lever pressing was established and maintained in rats that were magazine trained at 70% of ad libitum weight but that were then exposed to the delay procedure at 90% of ad libitum weight. Responding did not change consistently either across or within subjects in subsequent conditions in which body weight was manipulated. In the final experiment, lever pressing was established and maintained with delayed reinforcement in the absence of magazine training for each of 2 rats at 70% and for 1 of 2 rats at 90% of ad libitum weight. The results further illuminate the conditions under which responding can be established in the absence of training and when such responses are reinforced only following an unsignaled delay period.  相似文献   

9.
Palatable food intake reduces stress responses, suggesting that individuals may consume such ?comfort? food as self-medication for stress relief. The mechanism by which palatable foods provide stress relief is not known, but likely lies at the intersection of forebrain reward and stress regulatory circuits. Forebrain opioidergic and gamma-aminobutyric acid ergic signaling is critical for both reward and stress regulation, suggesting that these systems are prime candidates for mediating stress relief by palatable foods. Thus, the present study (1) determines how palatable ?comfort? food alters stress-induced changes in the mRNA expression of inhibitory neurotransmitters in reward and stress neurocircuitry and (2) identifies candidate brain regions that may underlie comfort food-mediated stress reduction. We used a model of palatable ?snacking? in combination with a model of chronic variable stress followed by in situ hybridization to determine forebrain levels of pro-opioid and glutamic acid decarboxylase (GAD) mRNA. The data identify regions within the extended amygdala, striatum, and hypothalamus as potential regions for mediating hypothalamic-pituitary-adrenal axis buffering following palatable snacking. Specifically, palatable snacking alone decreased pro-enkephalin-A (ENK) mRNA expression in the anterior bed nucleus of the stria terminalis (BST) and the nucleus accumbens, and decreased GAD65 mRNA in the posterior BST. Chronic stress alone increased ENK mRNA in the hypothalamus, nucleus accumbens, amygdala, and hippocampus; increased dynorphin mRNA in the nucleus accumbens; increased GAD65 mRNA in the anterior hypothalamus and BST; and decreased GAD65 mRNA in the dorsal hypothalamus. Importantly, palatable food intake prevented stress-induced gene expression changes in subregions of the hypothalamus, BST, and nucleus accumbens. Overall, these data suggest that complex interactions exist between brain reward and stress pathways and that palatable snacking can mitigate many of the neurochemical alterations induced by chronic stress.  相似文献   

10.
11.
Although past research has indicated that stress and the accompanying increase in glucocorticoids compromises hippocampal neurons, little is known about the effect of stress on hippocampal glial cells. In the current study, male rats were exposed to activity-stress (A-S) for six days; this comprised housing with an activity wheel and restricted access (1h/day) to food. Physiological data (e.g., relative adrenal and thymus weights, gastric ulceration) suggested that the A-S rats experienced more stress than pair-fed (no wheel) and control (fed ad libitum, no wheel) rats. Whereas stress did not influence the quantitative morphology of glial fibrillary acidic protein (GFAP)-immunoreactive cells, a semi-quantitative analysis revealed that the A-S rats had significantly more (30%) GFAP-immunoreactive cells in the hippocampal CA3 region than the control rats. Based on the present findings, it appears that the hippocampal astrocytic response to chronic stress may be similar to the response found in endangered, or challenged hippocampal environments, such as in ischemia.  相似文献   

12.
Previous research indicates that vasopressin-containing (LE) rats are capable of adapting to the stress of food restriction, whereas vasopressin-deficient (DI) rats cannot adapt to this stressor. It has been postulated that abnormalities in glucose metabolism may be one of the factors leading to the demise of food-restricted DI rats. The present study was conducted to determine if taste preferences are altered in DI animals and if the presentation of exogenous glucose, in the form of sucrose solutions, can ameliorate the effects of the stress of food restriction. Four different concentrations of sucrose solutions were presented to LE and DI rats under the food-restricted condition. In both strains, an 8% sucrose solution was preferred over 0%, 16%, and 32% concentrations, with DI rats consuming more of this concentration than LE rats. Thus, when DI rats had the opportunity of maintaining glucose homeostasis by exogenous supplements, they maintained body weight, displayed no stomach pathology, and survived.  相似文献   

13.
Previous research indicates that vasopressin-containing (LE) rats are capable of adapting to the stress of food restriction, whereas vasopressin-deficient (DI) rats cannot adapt to this stressor. It has been postulated that abnormalities in glucose metabolism may be one of the factors leading to the demise of food-restricted DI rats. The present study was conducted to determine if taste preferences are altered in DI animals and if the presentation of exogenous glucose, in the form of sucrose solutions, can ameliorate the effects of the stress of food restriction. Four different concentrations of sucrose solutions were presented to LE and DI rats under the food-restricted condition. In both strains, an 8% sucrose solution was preferred over 0%, 16%, and 32% concentrations, with DI rats consuming more of this concentration than LE rats. Thus, when DI rats had the opportunity of maintaining glucose homeostasis by exogenous supplements, they maintained body weight, displayed no stomach pathology, and survived.  相似文献   

14.
We have previously demonstrated that both stress manipulations and corticotropin-releasing factor (CRF) elevate locomotor activity in mice primarily in the center region of an open field. In the present study, other than confirming these findings, we have further examined the roles of the dentate gyrus of the hippocampus, the amygdala, and the caudate nucleus in mediating the locomotor-stimulating effect of CRF. Results indicate that among the areas examined, the hippocampus is the most important neural substrate of the action of CRF. The amygdala is also partly responsible for the behavioral effect produced by CRF. The caudate nucleus, however, although is important in the expression of gross motor activity, is not involved in the effect of CRF on locomotion in mice. The results are compared with those obtained in rats and are discussed in terms of the interactions between CRF and stress.  相似文献   

15.
To study putative brain circuits involved in habituation to stress, rats were exposed daily (30 min for 15 days) to an environment in the presence (Chronic) or absence (Acute) of loud noise (105 dB sound pressure level--SPL A Scale). Behavioral and endocrine measures of stress were taken throughout this habituation period, and both measures displayed strong habituation in the Chronic group. All rats were killed immediately after the day 16 exposure, constituting an acute stressor for the Acute group, and regional brain activity was assessed using c-fos mRNA induction with in situ hybridization. Hearing damage could not easily explain these results because additional rats exposed to a similar stress protocol exhibited no changes in auditory brainstem evoked potentials. c-fos mRNA induction in the central auditory system was similar between the Acute and Chronic groups, particularly at lower auditory processing levels, also arguing against a simple reduction in auditory processing in the chronically stressed rats. However, c-fos mRNA expression was reduced in chronically, as compared to acutely, stressed rats in several regions previously implicated in audiogenic stress (lateral septum, bed nucleus of the stria terminalis, some preoptic areas, and the paraventricular hypothalamic nucleus). Interestingly, the orbitofrontal cortex was the only region displaying higher c-fos mRNA induction in the chronically as compared to acutely stressed rats. This region has connections to several stress-responsive areas and may thus be a critical region actively inhibiting stress.  相似文献   

16.
Growing evidence indicates that antagonists of the 5-hydroxytryptamine (serotonin) receptor6 (5-HT6) improve memory and reverse amnesia although the mechanisms involved are poorly understood. Hence, in this paper RT-PCR was used to evaluate changes in mRNA expression of 5-HT6 receptor in trained and untrained rats treated with the 5-HT6 receptor antagonist SB-399885 and amnesic drugs scopolamine or dizocilpine. Changes in mRNA expression of 5-HT6 receptor were investigated at different times in prefrontal cortex, hippocampus and striatum. Data indicated that memory in the Pavlovian/instrumental autoshaping task was a progressive process associated to reduced mRNA expression of 5-HT6 receptor in the three structures examined. SB-399885 improved long-term memory at 48 h, while the muscarinic receptor antagonist scopolamine or the non-competitive NMDA receptor antagonist dizocilpine impaired it at 24 h. Autoshaping training and treatment with SB-399885 increased 5-HT6 receptor mRNA expression in (maximum increase) prefrontal cortex and striatum, 24 or 48 h. The scopolamine-induced amnesia suppressed 5-HT6 receptor mRNA expression while the dizocilpine-induced amnesia did not modify 5-HT6 receptor mRNA expression. SB-399885 and scopolamine or dizocilpine were able to reestablish memory and 5-HT6 receptor mRNA expression. These data confirmed previous memory evidence and of more interest is the observation that training, SB-399885 and amnesic drugs modulated 5-HT6 receptor mRNA expression in prefrontal cortex, hippocampus and striatum. Further investigation in different memory tasks, times and amnesia models together with more complex control groups might provide further clues.  相似文献   

17.
The immediate-early gene hzf-3, also known as nurr1, is a member of the inducible orphan nuclear receptor family and is one candidate in the search for genes associated with learning and memory processes. Here we report that acquisition of a spatial food search task is accompanied by elevated levels of hzf-3 mRNA in the hippocampus. Adult male Long-Evans rats were handled, food-restricted, and allowed to habituate to the maze prior to training. During acquisition, rats were given one training session per day for 5 days. Each training session consisted of five trials in which animals searched the maze for food located in 4 of 16 holes in the floor of the maze. Training resulted in spatial acquisition of the task. Northern blot analysis showed significant increases in hippocampal hzf-3 mRNA 3 h after training in the maze. Next, brains were obtained from Naive, Habituated, Day 1, Day 3, and Day 5 animals and processed for in situ hybridization. The results showed significant increases of hzf-3 mRNA in CA1 and CA3 subregions of the dorsal hippocampus during acquisition of the task. We conclude that expression of the hzf-3 gene in the brain is associated with long-term spatial memory processes. The present results are the first to implicate an orphan nuclear receptor in long-term information storage in the hippocampus.  相似文献   

18.
Chronic, limbic epilepsy was induced in male rats by a single systemic injection of lithium and pilocarpine. In two separate experiments, each 6 mo. in duration, the proportion of the population that displayed an overt motor seizure (head nodding, rearing, and forelimb clonus) within 10 min. each day after delivery of food pellets (despite food provided ad libitum) was recorded. Cumulative records for the numbers of rats in each population that displayed overt seizure for the first time during the observation period were plotted as a function of time. The occurrence of the saturated (approaching 100%) asymptote at about five months was interpreted to indicate that brief (10 min.) sampling over the 144 successive days that would compose a single 24-hr. period could serve as an estimate of the average probability of an overt seizure during an average 24-hr. period. If this assumption is correct, then these rats would have displayed about one overt seizure per day.  相似文献   

19.
The present article examined the requirement of hippocampal c-Fos for learning a socially transmitted food preference (STFP). We reported previously that expression of the c-Fos protein is increased in the dorsal and ventral hippocampus of rats trained on the STFP (Countryman, Orlowski, Brightwell, Oskowitz, & Colombo, 2005). Pretraining intrahippocampal antisense to the immediate early gene c-fos was administered to adult male Long-Evans rats to determine if c-fos expression is necessary for either short- or long-term memory for STFP. Guide cannulae were implanted bilaterally into the dorsal hippocampus. Antisense oligodeoxynucleotides (ODNs) were administered unilaterally either 6.5, 8.5, 10.5, or 12.5 h prior to STFP training while either sense ODNs or saline were infused into the opposite hemisphere. Immunocytochemistry was performed, and cells showing c-Fos immunoreactivity (ir) were counted from the antisense-treated hemisphere and compared to cell counts from the control hemisphere. The results indicated significant suppression of learning-induced c-Fos protein at the 8.5 and 10.5 infusion-train intervals. Additional rats were implanted with cannulae into the dorsal and ventral hippocampus, and antisense ODNs, sense ODNs, or saline were administered bilaterally 8.5h prior to training. Rats were tested immediately and 14 days after training. Rats in all groups showed a significant preference for the demonstrated food at the short-term memory test. At the long-term memory test, however, rats infused with c-fos antisense showed no preference for the demonstrated food whereas rats infused with either sense or saline maintained their preference. The present findings suggest that c-fos is necessary for consolidation of non-spatial hippocampal-dependent memory.  相似文献   

20.
Some laboratory studies have suggested that whereas food restriction in animals leads to response alternation (behavioural flexibility), water restriction induces perseverative, stereotyped responding. Hooded rats, restricted to 1 hour per day access to either food or water, were tested on a radial-arm maze (using a procedure that eliminates algorithmic response strategies), for alternation in a 3-arm maze (both when the maze was familar and unfamilar, and with or without differential reward) and a 2-choice maze in which some animals were taught to alternate direction of turn, and others to perseverate. Both groups performed the radial-arm maze task competently and spontaneously alternated at a high rate. In the learned task, food-restricted rats were slower than water-restricted to reverse a consistent direction of turn; in the alternation condition, water-restricted rats developed a temporary, but strong, directional bias when making their first choice each day. Water-restricted subjects took water more readily than food-restricted took food when initially introduced to the apparatuses, but there was no consistent difference in motivation in the two conditions. The results provide little support for the notion that distinct cognitive-motivational states or behavioural strategies are induced by food- and water-restriction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号