首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When a person moves in a straight line through a stationary environment, the images of object surfaces move in a radial pattern away from a single point. This point, known as the focus of expansion (FOE), corresponds to the person's direction of motion. People judge their heading from image motion quite well in this situation. They perform most accurately when they can see the region around the FOE, which contains the most useful information for this task. Furthermore, a large moving object in the scene has no effect on observer heading judgments unless it obscures the FOE. Therefore, observers may obtain the most accurate heading judgments by focusing their attention on the region around the FOE. However, in many situations (e.g., driving), the observer must pay attention to other moving objects in the scene (e.g., cars and pedestrians) to avoid collisions. These objects may be located far from the FOE in the visual field. We tested whether people can accurately judge their heading and the three-dimensional (3-D) motion of objects while paying attention to one or the other task. The results show that differential allocation of attention affects people's ability to judge 3-D object motion much more than it affects their ability to judge heading. This suggests that heading judgments are computed globally, whereas judgments about object motion may require more focused attention.  相似文献   

2.
When moving toward a stationary scene, people judge their heading quite well from visual information alone. Much experimental and modeling work has been presented to analyze how people judge their heading for stationary scenes. However, in everyday life, we often move through scenes that contain moving objects. Most models have difficulty computing heading when moving objects are in the scene, and few studies have examined how well humans perform in the presence of moving objects. In this study, we tested how well people judge their heading in the presence of moving objects. We found that people perform remarkably well under a variety of conditions. The only condition that affects an observer’s ability to judge heading accurately consists of a large moving object crossing the observer’s path. In this case, the presence of the object causes a small bias in the heading judgments. For objects moving horizontally with respect to the observer, this bias is in the object’s direction of motion. These results present a challenge for computational models.  相似文献   

3.
Rushton SK  Bradshaw MF  Warren PA 《Cognition》2007,105(1):237-245
An object that moves is spotted almost effortlessly; it "pops out". When the observer is stationary, a moving object is uniquely identified by retinal motion. This is not so when the observer is also moving; as the eye travels through space all scene objects change position relative to the eye producing a complicated field of retinal motion. Without the unique identifier of retinal motion an object moving relative to the scene should be difficult to locate. Using a search task, we investigated this proposition. Computer-rendered objects were moved and transformed in a manner consistent with movement of the observer. Despite the complex pattern of retinal motion, objects moving relative to the scene were found to pop out. We suggest the brain uses its sensitivity to optic flow to "stabilise" the scene, allowing the scene-relative movement of an object to be identified.  相似文献   

4.
This study examined whether the perception of heading is determined by spatially pooling velocity information. Observers were presented displays simulating observer motion through a volume of 3-D objects. To test the importance of spatial pooling, the authors systematically varied the nonrigidity of the flow field using two types of object motion: adding a unique rotation or translation to each object. Calculations of the signal-to-noise (observer velocity-to-object motion) ratio indicated no decrements in performance when the ratio was .39 for object rotation and .45 for object translation. Performance also increased with the number of objects in the scene. These results suggest that heading is determined by mechanisms that use spatial pooling over large regions.  相似文献   

5.
Four experiments were directed at understanding the influence of multiple moving objects on curvilinear (i.e., circular and elliptical) heading perception. Displays simulated observer movement over a ground plane in the presence of moving objects depicted as transparent, opaque, or black cubes. Objects either moved parallel to or intersected the observer's path and either retreated from or approached the moving observer. Heading judgments were accurate and consistent across all conditions. The significance of these results for computational models of heading perception and for information in the global optic flow field about observer and object motion is discussed.  相似文献   

6.
Object and observer motion in the perception of objects by infants   总被引:1,自引:0,他引:1  
Sixteen-week-old human infants distinguish optical displacements given by their own motion from displacements given by moving objects, and they use only the latter to perceive the unity of partly occluded objects. Optical changes produced by moving the observer around a stationary object produced attentional levels characteristic of stationary observers viewing stationary displays and much lower than those shown by stationary observers viewing moving displays. Real displacements of an object with no subject-relative displacement, produced by moving an object so as to maintain a constant relation to the moving observer, evoked attentional levels that were higher than with stationary displays and more characteristic of attention to moving displays, a finding suggesting detection of the real motion. Previously reported abilities of infants to perceive the unity of partly occluded objects from motion information were found to depend on real object motion rather than on optical displacements in general. The results suggest that object perception depends on registration of the motions of surfaces in the three-dimensional layout.  相似文献   

7.
Perceptual judgments of objects, such as judgments of their size, distance, and speed, are influenced by the perceiver’s ability to act on these objects. For example, objects that are easier to block appear to be moving slower than objects that are more difficult to block. These effects are known as action-specific effects. Recent research has found similar patterns when a person observes someone else act: When the other person’s task is more difficult, objects look farther away and faster to the observer, whereas when the other person’s task is easier, the objects look closer and slower to the observer. These previous findings that another person’s ability penetrates into perceptual judgments challenge the idea that action-specific effects are specific to the perceiver’s own abilities. However, in the present study, we show that the apparent effects of another person’s ability on the observer’s judgments are actually due to the observer’s own abilities as if he or she was in the other person’s situation. This implicates a type of self-projection motor simulation mechanism. The results also preserve the critical idea that action-specific effects are perceiver specific and, consequently, that they could be adaptive for planning future actions.  相似文献   

8.
In the present study, we examined whether it is easier to judge when an object will pass one’s head if the object’s surface is textured. There are three reasons to suspect that this might be so: First, the additional (local) optic flow may help one judge the rate of expansion and the angular velocity more reliably. Second, local deformations related to the change in angle between the object and the observer could help track the object’s position along its path. Third, more reliable judgments of the object’s shape could help separate global expansion caused by changes in distance from expansion due to changes in the angle between the object and the observer. We can distinguish among these three reasons by comparing performance for textured and uniform spheres and disks. Moving objects were displayed for 0.5–0.7 sec. Subjects had to decide whether the object would pass them before or after a beep that was presented 1 sec after the object started moving. Subjects were not more precise with textured objects. When the disk rotated in order to compensate for the orientation-related contraction that its image would otherwise undergo during its motion, it appeared to arrive later, despite the fact that this strategy increases the global rate of expansion. We argue that this is because the expected deformation of the object’s image during its motion is considered when time to passage is judged. Therefore, the most important role for texture in everyday judgments of time to passage is probably that it helps one judge the object’s shape and thereby estimate how its image will deform as it moves.  相似文献   

9.
Research on dynamic attention has shown that visual tracking is possible even if the observer’s viewpoint on the scene holding the moving objects changes. In contrast to smooth viewpoint changes, abrupt changes typically impair tracking performance. The lack of continuous information about scene motion, resulting from abrupt changes, seems to be the critical variable. However, hard onsets of objects after abrupt scene motion could explain the impairment as well. We report three experiments employing object invisibility during smooth and abrupt viewpoint changes to examine the influence of scene information on visual tracking, while equalizing hard onsets of moving objects after the viewpoint change. Smooth viewpoint changes provided continuous information about scene motion, which supported the tracking of temporarily invisible objects. However, abrupt and, therefore, discontinuous viewpoint changes strongly impaired tracking performance. Object locations retained with respect to a reference frame can account for the attentional tracking that follows invisible objects through continuous scene motion.  相似文献   

10.
In the present study, we examined whether it is easier to judge when an object will pass one's head if the object's surface is textured. There are three reasons to suspect that this might be so: First, the additional (local) optic flow may help one judge the rate of expansion and the angular velocity more reliably. Second, local deformations related to the change in angle between the object and the observer could help track the object's position along its path. Third, more reliable judgments of the object's shape could help separate global expansioncaused by changes in distance from expansion due to changes in the angle between the object and the observer. We can distinguish among these three reasons by comparing performance for textured and uniform spheres and disks. Moving objects were displayed for 0.5-0.7 sec. Subjects had to decide whether the object would pass them before or after a beep that was presented 1 sec after the object started moving. Subjects were not more precise with textured objects. When the disk rotated in order to compensate for the orientation-related contraction that its image would otherwise undergo during its motion, it appeared to arrive later, despite the fact that this strategy increases the global rate of expansion. We argue that this is because the expected deformation of the object's image during its motion is considered when time to passage is judged. Therefore, the most important role for texture in everyday judgments of time to passage is probably that it helps one judge the object's shape and thereby estimate how its image will deform as it moves.  相似文献   

11.
In two experiments, we manipulated the properties of 3-D objects and terrain texture in order to investigate their effects on active heading control during simulated flight. Simulated crosswinds were used to introduce a rotational component into the retinal flow field that presumably provided the visual cues used for heading control An active control task was used so that the results could be generalized to real-world applications such as flight simulation. In Experiment 1, we examined the effects of three types of terrain, each of which was presented with and without 3-D objects (trees), and found that the presence of 3-D objects was more important than terrain texture for precise heading control In Experiment 2, we investigated the effects of varying the height and density of 3-D objects and found that increasing 3-D object density improved heading control, but that 3-D object height had only a small effect. On the basis of these results, we conclude that the vertical contours improved active heading control by enhancing the motion parallax information contained in the retinal flow.  相似文献   

12.
晏碧华  游旭群 《心理学报》2015,47(2):212-223
相对到达时间任务(RAT)是判断两个运动客体哪个先到达指定目标, 可用来评估个体动态空间能力。采用RAT任务对飞行员与普通被试进行对照研究, 寻求发现两组在运动客体特征和视觉空间运动特征及其相互关系上的处理差异。设计了3个实验分别考察客体颜色、客体大小、运动方向、速率大小、视线方向以及背景特征对判断的影响。结果显示:(1)客体颜色不影响运动客体的相对时间判断, 客体大小、运动方向、速率大小、视线方向以及背景特征影响判断; (2)控制组对显示屏上从左到右的运动客体的相对时间判断好于从右到左任务, 大速率任务判断更好, 对大客体快速行驶而小客体低速行驶时的相对到达时间更易区分, 且与两眼视线方向不一致的运动方向会使控制组判断更难, 运动背景中的目标线特征改变使控制组判断绩效降低; (3)和控制组比, 飞行员反应快正确率高, 其快速判断优势集中体现在从右到左运动以及小速率任务上, 且在不同运动方向和不同速率上的反应时均无差异, 飞行员的处理优势还表现在不受客体大小、视线方向改变和目标线特征改变的影响。结论:飞行员能在变化的空间中准确处理相对速度、相对距离、相对时间等运动信息, 能分离客体大小、背景、运动方向等因素对相对到达时间判断的影响, 在运动空间中飞行员具有较高场独立性认知特征和动态空间处理能力。  相似文献   

13.
This study tested whether multiple-object tracking-the ability to visually index objects on the basis of their spatiotemporal history-is scene based or image based. Initial experiments showed equivalent tracking accuracy for objects in 2-D and 3-D motion. Subsequent experiments manipulated the speeds of objects independent of the speed of the scene as a whole. Results showed that tracking accuracy was influenced by object speed but not by scene speed. This held true whether the scene underwent translation, zoom, rotation, or even combinations of all 3 motions. A final series of experiments interfered with observers' ability to see a coherent scene by moving objects at different speeds from one another and by distorting the perception of 3-D space. These reductions in scene coherence led to reduced tracking accuracy, confirming that tracking is accomplished using a scene-based, or allocentric, frame of reference.  相似文献   

14.
Baurès R  Hecht H 《Perception》2011,40(6):674-681
On Earth, gravity accelerates freely moving objects downward, whereas upward-moving objects are being decelerated. Do humans take internalised knowledge of gravity into account when estimating time-to-contact (TTC, the time remaining before the moving object reaches the observer)? To answer this question, we created a motion-prediction task in which participants saw the initial part of an object's trajectory moving on a collision course prior to an occlusion. Observers had to judge when the object would make contact with them. The visual scene was presented with a head-mounted display. Participants lay either supine (looking up) or prone (looking down), suggestive of the ball either rising up or falling down toward them. Results showed that body posture had a significant effect on time-to-contact estimation, but only when occlusion times were long (2.5 s). The effect was also rather small. This lack of immediacy in the posture effect suggests that TTC estimation is initially robust toward the effect of gravity, which comes to bear only as more time is allowed for post-processing of the visual information.  相似文献   

15.
The effects of a background scene on the perception of the trajectory of an approaching object and its relation to changes in angular speed and angular size were examined in five experiments. Observers judged the direction (upward or downward) of two sequentially presented motion trajectories simulating a sphere traveling toward the observer at a constant 3-D speed from a fixed distance. In Experiments 14, we examined the effects of changes in angular speed and the presence of a scene background, with changes in angular size based either on the trajectories being discriminated or on an intermediate trajectory. In Experiment 5, we examined the effects of changes in angular speed and scene background, with angular size either constant or consistent with an intermediate 3-D trajectory. Overall, we found that (1) observers were able to judge the direction of object motion trajectories from angular speed changes; (2) observers were more accurate with a 3-D scene background, as compared with a uniform background, suggesting that scene information is important for recovering object motion trajectories; and (3) observers were more accurate in judging motion trajectories based on angular speed when the angular size function was consistent with motion in depth than when the angular size was constant.  相似文献   

16.
Bootsma RJ  Craig CM 《Perception》2002,31(8):901-924
First-order time remaining until a moving observer will pass an environmental element is optically specified in two different ways. The specification provided by global tau (based on the pattern of change of angular bearing) requires that the element is stationary and that the direction of motion is accurately detected, whereas the specification provided by composite tau (based on the patterns of change of optical size and optical distance) does not require either of these. We obtained converging evidence for our hypothesis that observers are sensitive to composite tau in four experiments involving relative judgments of time to passage with forced-choice methodology. Discrimination performance was enhanced in the presence of a local expansion component, while being unaffected when the detection of the direction of heading was impaired. Observers relied on the information carried in composite tau rather than on the information carried in its constituent components. Finally, performance was similar under conditions of observer motion and conditions of object motion. Because composite tau specifies first-order time remaining for a large number of situations, the different ways in which it may be detected are discussed.  相似文献   

17.
空间视角转换是从他人视角表征空间关系的能力。本文根据Flavell对空间视角转换能力分出的两个水平,把以往研究的研究方法分为6类:考察一级视角转换能力的可见性任务、数量判断,以及考察二级视角转换能力的识别任务、方向判断、地图巡航、数量判断。随后总结出三种相应的空间视角转换研究的加工理论:,并在以往研究的基础上提出了选取适合的实验任务、开展多个物体的视角转换研究、更多采用虚拟现实呈现刺激材料这3点研究展望。  相似文献   

18.
Four experiments investigated judgments of the size of projections of objects on the glass surface of mirrors and windows. The authors tested different ways of explaining the task to overcome the difficulty that people had in understanding what the projection was, and they varied the distance of the observer and the object to the mirror or window and varied the size of the mirror. The authors compared estimations of projected size with estimations of the physical size of the object that produced the projection. For both mirrors and windows, observers accurately judged the physical size of objects but greatly overestimated the projected size of the same objects. Indeed, judgments of projected size were more similar to physical than to projected size. People were also questioned verbally about their knowledge of projected size relative to physical size. The errors produced for these conceptual questions were similar to those found in the perceptual estimation tasks. Together, these results suggest that projections of objects on mirrors and windows are treated in the same way and that observers cannot perceive such projections as distal objects.  相似文献   

19.
Understanding natural dynamics   总被引:1,自引:0,他引:1  
When making dynamical judgments, people can make effective use of only one salient dimension of information present in the event. People do not make dynamical judgments by deriving multidimensional quantities. The adequacy of dynamical judgments, therefore, depends on the degree of dimensionality that is both inherent in the physics of the event and presumed to be present by the observer. There are two classes of physical motion contexts in which objects may appear. In the simplest class, there exists only one dynamically relevant object parameter: the position over time of the object's center of mass. In the other class of motion contexts, there are additional object attributes, such as mass distribution and orientation, that are of dynamical relevance. In the former class, objects may be formally treated as extensionless point particles, whereas in the latter class some aspect of the object's extension in space is coupled into its motion. A survey of commonsense understandings showed that people are relatively accurate when specific dynamical judgments can be accurately based on a single information dimension; however, erroneous judgments are pervasive when simple motion contexts are misconstrued as being multidimensional, and when multidimensional quantities are the necessary basis for accurate judgments.  相似文献   

20.
周荣刚  张侃 《心理学报》2008,40(12):1229-1239
以绝对方位中的物体方位判断为实验任务,并按照以往研究把判断过程进行分解为获取目标位置信息、获取前行方向信息和判断目标物体相对于参照物体的方位信息,旨在考察不同信息获取过程下的目标位置和前行方向如何影响基于场景记忆的参照系整合过程中的绝对方位判断。实验1的判断任务同时包括这三个过程;实验2和实验3中的判断任务分别独立于路径描述(即定位后判断,先获知目标位置信息,再进行方位判断)和自身定向(即定向后判断,先获取前行方向信息,再进行方位判断)。每个任务均为目标位置(R0o-前、R45o-左前/右前、R90o-左/右、R135o-左后/右后, R180o-后)×前行方向(北、东南西、斜方向)的组内设计、因变量为正确率和判断时间为主,共有60名大学生被试(男女各半)参与实验。发现:朝北优势效应只在实验1中明显;三个实验任务中均存在正方向-左右位置优势效应、以及0o和180o位置优势效应;目标位置对物体方位判断的影响程度要大于前行方向对判断的影响程度。结合以往的研究来看,场景记忆上的判断比视觉媒介上的同类判断受目标位置影响的程度要大,其他影响模式比较一致。从判断的信息获取过程上对结果进行了讨论,这有助于理解绝对方位判断的认知结构  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号