首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rats were trained on an eight-arm radial maze task using a procedure that provides for an assessment of both working and reference memory. Following training, rats received parietal cortex, medial prefrontal cortex, visual cortex, or nucleus basalis magnocellularis lesions. Rats with visual cortex lesions showed no change in performance on either working or reference memory. Rats with parietal cortex lesions displayed a temporary deficit in reference, but no deficit on working memory. Animals with medial prefrontal cortex lesions showed a temporary deficit on both working and reference memory. Rats with extensive lateral frontal and parietal cortex depletion of acetylcholinesterase following nucleus basalis magnocellularis lesions had a marked disruption only of reference but not of working memory. It is concluded that neocortex and possibly the cholinergic projections to neocortex play an important role in mediating reference memory.  相似文献   

2.
To compare the predictive value of "cognitive map" and "working memory" theories of hippocampal function, the performance of rats with dorsal hippocampal lesions was compared to that of control rats in a series of experiments. In Experiment I, experimental rats learned a spatial alternation task with normal ease, but in Experiment II, they were significantly impaired on an elevated 8-arm radial maze. In Experiment III, the performance of the same experimental and control rats was compared on two versions of a 16-arm enclosed radial maze. In the first version, carpet inserts served as cues to mark eight unbaited arms and each of the remaining arms contained one food pellet. While both experimental and control rats successfully avoided the set of cued arms, experimental rats reentered uncued baited arms more frequently than did control rats. In the second version no intramaze cues were provided, but the spatial distribution of baited and unbaited arms remained the same as that used in the first version. In this uncued version, experimental rats both entered unbaited arms and reentered baited arms more frequently than did control rats, i.e., they were impaired in both "reference" and "working" memory. These findings are compatible with the hypothesis that hippocampal lesions result in an impaired capacity to form cognitive maps but they are not compatible with the working memory hypothesis. Furthermore, twelve separate evaluators classed experimental rats as using fewer mapping and more orientation strategies than control rats in the 8-arm maze.  相似文献   

3.
On a radial arm maze rats were tested for frequency memory of specific spatial locations, a task that presumably involves the coding of temporal information. On any trial during the study phase rats were allowed to visit three different spatial locations only once and one spatial location twice. During the test phase the rats were given a choice between a spatial location that had been visited once and spatial location that had been visited twice. The rats were reinforced for selecting the twice-visited spatial location. The number of spatial locations between a repetition (lag) was varied from one to three. After extensive training rats displayed memory for frequency only for a lag of three spatial locations, i.e., they displayed a repetition lag effect. Animals then received control, medial prefrontal cortex, or hippocampal lesions. Upon subsequent retests control rats continued to display frequency memory, but animals with medial prefrontal cortex or hippocampal lesions displayed a marked impairment. These data support the idea that both the hippocampus and medial prefrontal cortex code temporal order information.  相似文献   

4.
Transient deficits have been reported after unilateral entorhinal cortex (EC) lesion. To determine whether there is a more persistent deficit, adult male Sprague–Dawley rats with electrolytic or sham lesions of the left entorhinal cortex were examined on acquisition of a modified working memory task in the Morris water maze. This delayed matching-to-sample task, with a 1-h intertrial interval, reveals a significant deficit in total distance to platform in both presentation (Trial 1) and matching (Trial 2) in the rats with entorhinal lesions. We have also found that this test can be used to assess significant deficits in perseveration (repeated nonproductive movement) in rats with entorhinal lesions. The deficits can be seen up to 16 days postinjury. Administration of ganglioside GM1 resulted in a moderate improvement in performance in both water maze measures analyzed. All groups (sham operated, lesion with saline treatment, and lesion with ganglioside GM1 treatment) were given three other tests, which were used to evaluate possible contributing factors to deficient water maze performance. A one-trial test for exploration of novel objects revealed no significant, simple working memory deficit in any group. Plus maze testing, to assess possible differences in levels of anxiety or increased activity as a component of water maze performance, also revealed no differences in the three groups. All groups were also similar in motor activity, shown by monitoring of activity levels. The worsened water maze performance observed in rats with EC lesion may be related to deficits in working memory ability within the framework of acquisition of a more complex spatial learning task.  相似文献   

5.
This study examined the effects of ibotenate lesions of either the entorhinal cortex (EC) or the subiculum (SUB) on the ability of mice to memorize a single spatial location (initial discrimination), and on their capacity to switch to a new location (transfer) following the initial learning in an eight-arm radial maze. Results indicated that mice with ibotenate lesions of the EC or SUB were impaired in postoperative acquisition of the spatial discrimination task, making more reference, but not working memory, errors and displaying fewer first correct response trials than sham-operated control mice. Furthermore, additional damage to the ventral hippocampus exacerbated the impairment of performance induced by lesions of the SUB alone. In addition, all mice, except for the combined lesion group, exhibited similar performance levels when they were trained to choose another arm of the maze that had not previously been baited (transfer). These findings suggest that both the EC and the SUB play important roles in spatial information processing in mice.  相似文献   

6.
Male Long-Evans rats alternately drank a salt solution in one distinctive compartment of a conditioned cue preference (CCP) apparatus and water in a different compartment over 8 days (training trials) and were then given a choice between the two compartments with no solutions present (test trial). Rats that were water deprived during training, then salt+water deprived during testing, spent more time in their salt-paired compartments, a salt latent cue preference (LCP). Rats that were water-only deprived during training and testing spent more time in their water-paired compartments, a water CCP. Rats that were salt+water deprived during both training and testing spent more time in their salt-paired compartments, a salt CCP. Bilateral, pre-training lesions of the lateral amygdala impaired the water and salt CCPs but not the salt LCP, reflecting the role of the amygdala in Pavlovian conditioning. Lesions of the dorsal or ventral hippocampus impaired the salt LCP and the water and salt CCPs, possibly reflecting the role of the hippocampus in contextual learning. Lesions of the fimbria-fornix impaired the water and salt CCPs but not the salt LCP, while lesions of the entorhinal cortex impaired the salt LCP but not the CCPs. This suggests that the LCP depends on a circuit that includes dorsal and ventral hippocampus and entorhinal cortex, a major conduit of sensory information from the cortex. In contrast, the CCPs depend on the amygdala and a circuit that includes the hippocampus and fimbria-fornix, possibly as a conduit of motivational information from subcortical structures.  相似文献   

7.
The main purpose of the present research was to investigate the ability of rats to learn a 12-arm radial maze task that requires the concurrent utilization of both spatial and intramaze cue information. The task involves in a single trial both place and cue learning as well as reference memory (RM) and working memory (WM). Since the animal can choose place and cue arms in any order, the strategies employed to learn the task can be studied as well as the kinds of memory errors that are made. The results of Experiment 1 showed that the number of errors made on the place and cue components of the task did not differ, and that more RM than WM errors were made early during learning. As the task was learned, the animals tended to choose the place arms before choosing the intramaze cue arms, thus suggesting that a spatial strategy was employed first followed by a cue strategy. In Experiment 2 lesions of the fimbria-fornix resulted in temporary impairments in both RM and WM that were especially apparent on the spatial component of the task. The lesioned rats also switched from choosing mostly place arms early during the trial to choosing more cue arms. While fimbria-fornix lesioned rats recovered from the memory impairments with training, the change in response strategy persisted throughout postoperative testing. The procedure of combining both spatial and non-spatial components concurrently in the same task should prove of value in studying response strategies in animals.  相似文献   

8.
In a previous study, adult male Sprague-Dawley rats with unilateral, electrolytic entorhinal cortex lesions showed significant deficits in acquisition of a water maze task that measured working memory. The 10 days of testing used two trials per day with an intertrial interval of 1 h, and the rats with entorhinal damage were impaired in total distance to the platform in both trials. In the present retention study, rats who learned the same task prior to injury and were then retested for 5 days after lesion showed only a first day deficit in total distance to platform in the second trial. Analysis of swim patterns indicated that rats with unilateral entorhinal lesions used an altered strategy in retention testing to find the platform in the second trial of each day and incorporated the use of headings appropriate for Trial 1 only. This altered or compensatory strategy was not the optimum choice for problem solution. Although the rats then were able to switch headings and find the platform without significant impairment in total distance to platform on days 2–5 of testing, the use of an initial incorrect strategy indicated subtle residual deficits in cue integration and use of working memory.  相似文献   

9.
Mounting evidence indicates that the retrosplenial cortex (RSP) has a critical role in spatial navigation. The goal of the present study was to characterize the specific nature of spatial memory deficits that are observed following damage to RSP. Rats with RSP lesions or sham lesions were first trained in a working memory task using an 8-arm radial arm maze. Rats were allowed 5 min to visit each arm and retrieve food pellets and a 5-s delay was imposed between arm choices. Consistent with previous research, rats with RSP damage committed more errors than controls. In particular, RSP-lesioned rats committed more errors of omission (failing to visit an arm of the maze), but there were no lesion effects on errors of commission (revisiting an arm). Neither group of rats exhibited a turn bias (i.e., always turning a certain direction when choosing an arm). At the end of the training phase of the experiment, both groups had reached asymptote and committed very few errors. In the subsequent test phase, a longer delay (30-s) was imposed during some sessions. Both control and RSP-lesioned rats continued to make few errors during sessions with the standard 5-s delay, but RSP-lesioned rats were impaired at the 30-s delay and committed more errors of commission, consistent with an increase in taxing spatial working memory.  相似文献   

10.
Both the medial prefrontal cortex (mPFC) and hippocampus are implicated in working memory tasks in rodents. Specifically, it has been hypothesized that the mPFC is primarily engaged in the temporary storage and processing of information lasting from a subsecond to several seconds, while the hippocampal function becomes more critical as the working memory demand extends into longer temporal scales. Although these structures may be engaged in a temporally separable manner, the extent of their contributions in the "informational content" of working memory remains unclear. To investigate this issue, the mPFC and dorsal hippocampus (dHPC) were temporarily inactivated via targeted infusions of the GABA(A) receptor agonist muscimol in rats prior to their performance on a delayed alternation task (DAT), employing an automated figure-eight maze that required the animals to make alternating arm choice responses after 3-, 30-, and 60-sec delays for water reward. We report that inactivation of either the mPFC or dHPC significantly reduced DAT at all delay intervals tested. However, there were key qualitative differences in the behavioral effects. Specifically, mPFC inactivation selectively impaired working memory (i.e., arm choice accuracy) without altering reference memory (i.e., the maze task rule) and arm choice response latencies. In contrast, dHPC inactivation increased both reference memory errors and arm choice response latencies. Moreover, dHPC, but not mPFC, inactivation increased the incidence of successive working memory errors. These results suggest that while both the mPFC and hippocampus are necessarily involved in DAT, they seem to process different informational components associated with the memory task.  相似文献   

11.
Conventional lesion methods have shown that damage to the rodent hippocampus can impair previously acquired spatial memory in tasks such as the water maze. In contrast, work with reversible lesion methods using a different spatial task has found remote memory to be spared. To determine whether the finding of spared remote spatial memory depends on the lesion method, we reversibly inactivated the hippocampus with lidocaine either immediately (0-DAY) or 1 mo (30-DAY) after training in a water maze. For both the 0-DAY and 30-DAY retention tests, rats that received lidocaine infusions exhibited impaired performance. In addition, when the 0-DAY group was retested 2 d later, (when the drug was no longer active), the effect was reversed. That is, rats that had previously received lidocaine performed as well as control rats did. These findings indicate that the rodent hippocampus is important for both recent and remote spatial memory, as assessed in the water maze. What determines whether remote spatial memory is preserved or impaired following disruption of hippocampal function appears to be the type of task used to assess spatial memory, not the method used to disrupt the hippocampus.  相似文献   

12.
It is well established that the dorsal hippocampal formation is crucial for spatial memory in rats. However, little is known about the distinct functions of the dorsal hippocampus and the dorsal subiculum. To examine the role of the dorsal hippocampus and the dorsal subiculum, Long-Evans rats with excitotoxic lesions (NMDA) of the dorsal hippocampus (DH), the dorsal subiculum (DS), or both (DHDS), and controls were trained on a nonmatching-to-place task. Then, to identify the strategy used by each group, they were tested on the same task in the dark with the T-maze being rotated between the sample and the test runs. In the light, rats with combined lesions were impaired. In the dark, groups DH, DS, and controls performed near chance level except in trials without rotation, suggesting the use of a sense of direction. The same rats were trained on a radial-arm maze task. In the light, where proximal visual cues were accessible, combined lesions affected performance whereas in the dark, it was impaired by all lesions. This experiment demonstrated that the dorsal subiculum and the dorsal hippocampus play a crucial role in processing idiothetic information and/or in maintenance of this information in memory.  相似文献   

13.
We studied the effect of different postoperative times on the behavioral recovery following brain implants. Adult male rats received cortical tissue grafts 2 weeks after aspiration of the medial frontal cortex. Either 2 (Immediate Group) or 28 (Delay Group) days after grafting, the performance of these rats on a behavioral battery, comprising the Morris water maze task, forepaw use, and grooming, was compared to that of rats with similar lesions and postoperative recovery times but no grafts. Rats tested immediately after receiving implants performed better on the spatial navigation task than rats with similar lesions but no grafts. This improvement, however, was less than that shown by rats with lesions but no grafts permitted to recover for 28 days before testing. In contrast, in the Delay Group, rats with grafts were more greatly impaired than were their operated controls. Neither lesions nor grafts affected grooming although the Immediate Group with grafts were significantly more impaired in using their forepaws during feeding than were any of the other groups. These results lead us to conclude that differing postoperative recovery times and task requirements may account for some of the inconsistent results of the influence of brain grafts on behavioral recovery reported in the literature. We also conclude that cortical tissue implants can have two effects with different time courses and opposite net behavioral effects.  相似文献   

14.
15.
The influence of estradiol on learning and memory is dependent on a number of factors. The effects of physiological levels of estradiol on the acquisition of a spatial working memory task mediated by the prefrontal cortex (PFC) and the hippocampus were examined in Experiment 1. Ovariectomized Long-Evans rats received daily injections of estradiol or vehicle were tested on the win-shift version of the radial arm maze. A high dose of estradiol benzoate (5 microg) enhanced acquisition of the task, whereas a low dose of estradiol (0.3 microg) increased the number of errors committed over 17 days of testing. Experiment 2 was conducted to examine site-specific influences of estradiol on spatial working memory in well-trained rats. Saline and estradiol cyclodextrin (0.1 and 0.9 microg) were infused into the prelimbic region of the PFC or dorsal hippocampus 40 min prior to testing on the win-shift task. Infusions of estradiol into both brain areas attenuated saline-infusion disruptions in working memory. Specifically, the higher dose of estradiol facilitated working memory when infused into the PFC, whereas the lower dose of estradiol facilitated performance when infused into the dorsal hippocampus. Moreover, working memory was significantly impaired 24 h after infusions of estradiol into the dorsal hippocampus but not the PFC. These data provide further evidence for the notion that estradiol can dose-dependently alter memory processes and suggest that facilitation or disruptions of working memory by estradiol are site- and time-specific.  相似文献   

16.
Entorhinal cortex lesions induce significant reorganization of several homotypic and heterotypic inputs to the hippocampus. This investigation determined whether surviving heterotypic inputs after bilateral entorhinal lesions would support the acquisition of a learned alternation task. Rats with entorhinal lesions or sham operations were trained to acquire a spatial alternation task. Although the sham-operated rats acquired the task within about 3 weeks postsurgery, rats with bilateral entorhinal lesions failed to learn the task after 12 consecutive weeks of training despite heterotypic sprouting of the cholinergic septodentate pathway and the expansion of the commissural/associational fiber plexus within the dentate gyrus. Thus, heterotypic sprouting failed to ameliorate significantly the effects of bilateral entorhinal lesions. Rather, entorhinal lesions produced a persistent impairment of spatial memory, characterized by a mixture of random error production and perseverative responding.  相似文献   

17.
Results from previous studies suggest that the entorhinal cortex may be involved in mnemonic processes. The present study was carried out to investigate whether disruption of fibre connections between the temporal cortex and lateral entorhinal area may impair retention of a pre-operatively acquired simultaneous brightness discrimination task. The lesion resulted in a severe impairment in retaining the discrimination task (Experiment 1). The retention deficit could not be traced into the hippocampal formation by making perforant path lesions or hippocampal lesions (Experiment 2). The results indicate that the lateral entorhinal cortex is more crucial for reference memory than the hippocampal formation.  相似文献   

18.
Several series of experiments were designed to compare the effects of selective lesions of the fimbria or of thalamic nuclei on three different tasks involving working memory in rats: object recognition, place recognition, and the radial arm maze test. The main effects of fimbria lesions were as follows: they produced deficits in the radial maze; object recognition was spared or even facilitated, whereas place recognition was impaired. Electrolytic lesions of either centromedian-parafascicularis (CM-Pf) or dorsomedialis (DM) nuclei produced highly significant deficits in the radial maze test but spared object and place recognition. Ibotenate lesions of the CM-Pf had no effect on any test, which means that the critical structure in the effects of the electrolytic lesions of the CM-Pf was the fasciculus retroflexus (FR). These data may contribute two main points to animal models of hippocampal and thalamic amnesia: (1) different forms of working memory in rats might have different neural bases and (2) the FR may be involved in learning and memory processes.  相似文献   

19.
Sham-operated and nonoperated animals or animals with hippocampal lesions were presented with sets of trials to test both expectancy-based and data-based memory within the same task. During the study phase of each trial the animals were presented with a constant sequence of five arms on an eight-arm radial maze followed by a test phase in which a recognition test requiring a win-stay rule was used. Expectancy-based memory was measured during the study phase of the trials as a pattern of correct or incorrect orienting responses in anticipation of the ensuing doors in the constant sequence. Both groups of animals acquired correct orienting responses at the same rate, emitted the same pattern of correct orienting responses, and made the same number and pattern of intralist and extralist intrusion errors. Data-based memory was measured during the test phase of the trial as correct recognition test performance. During the test phase the animals with hippocampal lesions were impaired relative to controls on both immediate and 24-h recognition tests. These results suggest that the hippocampus might mediate only data-based, but not expectancy-based, memory and imply a possible dissociation between expectancy-based and data-based memory systems.  相似文献   

20.
The impact of an acute circadian disruption on learning and memory in male and female rats was examined. Circadian disruption was elicited using a brief series of photoperiod shifts. Previous research using male rats showed that acute circadian disruption during acquisition of a spatial navigation task impaired long-term retention and that chronic circadian disruption impaired acquisition of the same task. However, the long-term effects of acute circadian disruption following circadian re-entrainment and whether sex differences in response to circadian disruption exist are still unknown. For the present study, rats were trained on the standard, spatial version of the Morris water task (MWT) and a visual discrimination task developed for the eight-arm radial maze. After reaching asymptotic performance, behavioural training was terminated and the experimental group experienced a series of photoperiod shifts followed by circadian re-entrainment. Following circadian re-entrainment, the subjects were given retention tests on the MWT and visual discrimination task. Following retention testing, an extra-dimensional shift using the eight-arm radial maze was also performed. An acute episode of circadian disruption elicited via photoperiod shifts negatively impacted retention of spatial memory in male and female rats. Retention of the visual discrimination task and the ability to detect extra-dimensional shifts were not impaired. The observed impairments on the MWT indicate that hippocampal representations are susceptible to a small number of photoperiod shifts even if the association is acquired prior to rhythm manipulation and retention is assessed following rhythm stabilization. Effects were limited to a hippocampus-dependent task, indicating that impairments are specific, not global.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号