首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The authors examined strategic selection of visual samples during manual aiming. Participants (N = 12) wore liquid-crystal goggles while performing discrete movements to a small target. Initially, participants controlled a 40-ms visual sample via a switch in their nonaiming hand. Subsequently, experimenter-imposed strategies required participants to take visual samples before movement initiation or early or late in the movement. Although participants adopted a variety of strategies to optimize the use of vision, they were more likely to select a sample during the early stages of the movement. Experimenter-imposed early and late instructions resulted in longer movement times than did self-selected sampling. Compared with late sampling, early sampling resulted in a temporal advantage with similar accuracy.  相似文献   

2.
3.
Three experiments were conducted to determine if a representation of the movement environment is functional in the organization and control of limb movements, when direct visual contact with the environment is prevented. In Experiment 1, a visual rearrangement procedure was employed to show that a representation of the environment that provides inaccurate information about the spatial location of a target can disrupt manual target aiming. In Experiment 2, we demonstrated that spatial information about the position of a target can be destroyed by a visual pattern mask, supporting our claim that the representation is visual. A target-cuing procedure was used in Experiment 3 to show that representation of target position can be useful for premovement organization in a target-aiming task. Together our findings suggest that a short-lived visual representation of the movement environment may serve a useful role in the organization and control of limb movements.  相似文献   

4.
The time course of the decay of spatial representations used for planning and controlling manual aiming has not been established. The authors' purpose in the present investigation was to generate a psychometric function for memory-guided reaching movements. Eight university-aged students performed a reciprocal tapping task for 10 s. Participants could see the targets for 5 s; then, vision of the targets was occluded. The present findings provide mixed support for 2 prominent theories concerning memory representations. Variability increased concurrently with the removal of vision of the targets, supporting the real-time hypothesis. However, a brief plateau in the curve was apparent for approximately 2 s after vision was removed, consistent with the use of a highly accurate representation for action.  相似文献   

5.
Target-aiming studies in which premovement visual information is manipulated suggest that when vision is occluded, a brief visual representation of the target environment may be used to guide movement. The purpose of this work was to determine if the internal representation contains information about the whole movement environment or just specific information about the position of a single target goal. Two experiments were conducted in which we manipulated both target uncertainty and the visual information available before and during a target-aiming movement. Radial error differences between visual conditions and the independence of the vision and uncertainty manipulations support the hypothesis that subjects form a representation of the overall movement environment.  相似文献   

6.
7.
The present paper reports a double-step analysis of a discrete aiming movement. A second target step was presented during the trajectory of the response to an initial step and represented an artificially induced movement error signal. Two stimulus patterns involving steps in the same direction (an undershoot error signal) and opposite direction (an overshoot error signal) to the initial step were examined. Moreover, in a random error condition the subject had no advance information regarding the direction of the error. In a deliberate error condition the subject knew in advance whether any subsequent error would be an undershoot or overshoot. Response parameters were considered as a function of the interstep interval which was randomly varied across trials. In terms of movement time, the standard deviations and a constant amendments score of double-step trials, subjects could respond more appropriately and effectively to a deliberate rather than a random error, and an undershoot error rather than an overshoot error. These results are discussed in terms of a mixed-mode of visuo-spatial error updating and related to the generalized motor program hypothesis.  相似文献   

8.
Eye aiming behavior during the solution of visual patterns   总被引:1,自引:0,他引:1  
  相似文献   

9.
The authors investigated whether movement-planning and feedback-processing abilities associated with the 2 hand-hemisphere systems mediate illusion-induced biases in manual aiming and saccadic eye movements. Although participants' (N = 23) eye movements were biased in the direction expected on the basis of a typical Müller-Lyer configuration, hand movements were unaffected. Most interesting, both left- and right-handers' eye fixation onset and time to hand peak velocity were earlier when they aimed with the left hand than they were when they aimed with the right hand, regardless of the availability of vision for online movement control. They thus adapted their eye-hand coordination pattern to accommodate functional asymmetries. The authors suggest that individuals apply different movement strategies according to the abilities of the hand and the hemisphere system used to produce the same outcome.  相似文献   

10.
Seeing one's hand in visual periphery has been shown to optimize the directional accuracy of a sweeping hand movement, which is consistent with Paillard's (1980; Paillard & Amblard, 1985) two-channels model of visual information processing. However, contrary to this model, seeing one's hand in central vision, even for a brief period of time, also resulted in optimal directional accuracy. One goal of the present study was to test two opposing hypotheses proposed to explain the latter finding. As a second goal, we wanted to determine whether additional support could be found for the existence of a visual kinetic channel. The results indicated that seeing one's hand in central vision, even for a very short delay, resulted in the same accuracy as being permitted to see one's hand for the duration of the whole movement. This suggests that seeing one's hand around the target might enable one to code its location and that of the target within a single frame of reference and, thus, facilitate movement planning. In addition, the results of the present study indicated that seeing one's hand in motion while in visual periphery permitted a better directional accuracy than when this information was not available. This suggests that the movement vector, which is planned prior to movement initiation, can be quickly updated following movement initiation.  相似文献   

11.
To elucidate the temporal characteristics of information processing for motor action differing in complexity in relation to both perceptual and cognitive information processing, we investigated whether the reaction times (RTs) to a visual target would be affected by task complexity (finger lifting or manual aiming), pre-cueing (with a pre-cue or without a pre-cue), or target location (five horizontal positions). Using the right hand, seven right-handed subjects performed two tasks, finger lifting and manual aiming at a target, with or without a pre-cue. The pre-cue announced the location of the target to be presented. An ANOVA showed significant interactions between task and location and between pre-cue and location with no significant interaction between task and pre-cue, indicating that the task-location interaction does not depend on whether or not a pre-cue is given. The manual-aiming RTs were longer than the finger-lifting RTs, and the effects of the target location on the RTs differed for finger lifting and manual aiming. It can be assumed that the longer RTs of manual aiming reflect the time for information processing that is needed when preparing for the aiming action per se, which is an extra movement performed in addition to the simple initiation of finger lifting. Differential RTs (DRTs) calculated by subtracting the finger-lifting RTs from the aiming RTs were therefore examined. The DRTs significantly differed for target locations (i.e., a lateralized effect), with the DRTs for an ipsilateral target appearing to be significantly shorter than those for contralateral and central targets. The lateralized effect appearing on the DRTs may be mediated by the processing of visual-spatial information about visual targets as motor preparations are made for manual aiming.  相似文献   

12.
Temporal and spatial coupling of point of gaze (PG) and movements of the finger, elbow, and shoulder during a speeded aiming task were examined. Ten participants completed 40-cm aiming movements with the right arm, in a situation that allowed free movement of the eyes, head, arm, and trunk. On the majority of trials, a large initial saccade undershot the target slightly, and 1 or more smaller corrective saccades brought the eyes to the target position. The finger, elbow, and shoulder exhibited a similar pattern of undershooting their final positions, followed by small corrective movements. Eye movements usually preceded limb movements, and the eyes always arrived at the target well in advance of the finger. There was a clear temporal coupling between primary saccade completion and peak acceleration of the finger, elbow, and shoulder. The initiation of limb-segment movement usually occurred in a proximal-to-distal pattern. Increased variability in elbow and shoulder position as the movement progressed may have served to reduce variability in finger position. The spatial-temporal coupling of PG with the 3 limb segments was optimal for the pick up of visual information about the position of the finger and the target late in the movement.  相似文献   

13.
Ishihara M  Imanaka K 《Perception》2007,36(9):1375-1390
We conducted two experiments to investigate whether the motor preparation of manual aiming to a visual target is affected by either the physical characteristics (size or luminance contrast) or spatial characteristics (location) of the target. Reaction time (RT) of both finger lifting (ie stimulus-detection time) and manual aiming (ie movement-triggering time) to the onset of the target was measured. The difference of RT (DRT) between two tasks (ie the difference of task complexity) was examined to clarify the temporal characteristics of manual aiming per se during visuomotor integration. Results show classical characteristics: RT decreased as either the target size or luminance contrast increased. Furthermore, the task-complexity and target-location factors significantly interacted with each other, where the aiming RT was longer than the finger-lifting RT and the effects of target location on RT differed for each task. However, the task factor did not interact with either the size or luminance-contrast factor, implying that the motor preparation of manual aiming is associated with the spatial characteristics rather than the physical characteristics of the target. Inspection of DRT revealed that the time needed for motor preparation for an ipsilateral target was significantly shorter than that for a contralateral target. This was the case both for the left and for the right hand. Foveal targets required longer processing time, implying a disadvantageous function of motor preparation for the gazed target. The left-hand superiority for the target appearing in the left visual field was also observed. Such lateralised effect and left-hand advantage to the left visual field in manual aiming suggest that visuospatial information processing is activated during the preparation of aiming action, with faster processing in the right hemisphere.  相似文献   

14.
The present paper examines the control principles underlying rapid manual tracking responses to horizontal double-step stimuli. The paper reports an experiment concerned with responses made to step-stimuli presented in quick succession. The amplitude of the second-step was varied between the initial step-position and the home-base. Double-step response parameters were analysed as a function of the determinant time interval (D) between the second step and the onset of the initial response. The initial response amplitude was observed to vary as a function of D. Amplitude transition functions were constructed representing the transition of the initial response amplitude between the two step positions; their slopes, furthermore, depended on the amplitude of the second target step. No delays in the initial reaction time with the interstimulus interval were observed. Minor delays to the onset of a corrective response were observed. These delays were in part related to a movement time constraint that is independent of any limitations in central processing capacity. The present findings for the manual control system are compared to double-step tracking analyses of the oculomotor control system.  相似文献   

15.
In a series of three experiments the visual modulation of movement during a reciprocal aiming task was examined when participants were confronted with sudden changes in visually specified task constraints. Amplitude and precision constraints were manipulated independently in Experiments 1 and 2, respectively, while their simultaneous effects were analyzed in Experiment 3. Analysis of the evolution of kinematic characteristics following a sudden change in task constraints revealed two different times scales of adaptation: a rapid adjustment occurring during the deceleration phase of the first movement following change and a more gradual adaptation, affecting the kinematic pattern as a whole, occurring over the next few movements. Overall, the results indicate that visual information with respect to the adequacy of the unfolding movement is continuously monitored, even under the least constraining conditions, and serves to modulate the pattern of movement to (a) comply with the (new) task constraints and (b) optimally tailor the pattern of movement to the situation at hand. We interpret these findings in the framework of a dynamical perspective on movement organization, with information modulating the parameters of an otherwise invariant underlying dynamical structure.  相似文献   

16.
Visual regulation of upper limb movements occurs throughout the trajectory and is not confined to discrete control in the target area. Early control is based on the dynamic relationship between the limb, the target, and the environment. Despite robust outcome differences between protocols involving visual manipulations, it remains difficult to identify the kinematic events that characterize these differences. In this study, participants performed manual aiming movements with and without vision. We compared several traditional approaches to movement analysis with two new methods of quantifying online limb regulation. As expected, participants undershot the target and their movement endpoints were more variable when vision was not available. Although traditional measures such as reaction time, time after peak velocity, and the presence of discontinuities in acceleration were sensitive to the visual manipulation, measures quantifying the trial-to-trial spatial variability throughout the trajectory were the most effective in isolating the time course of online regulation.  相似文献   

17.
We sought to determine if the asymmetrical tonic neck reflex influences the accuracy of self-selected arm positioning without vision and to ascertain if such accuracy is influenced by a pre-contraction of the prime movers. Participants reproduced an arm position using their abductors with the head in midline, rotated towards and away from the arm. Arm movements were made with and without a pre-contraction of the abductors. Twenty participants performed eight trials in each of the six different conditions. Compared to the midline position, participants undershot the reference position with the head turned away and overshot the position with the head rotated towards the arm. A pre-contraction caused undershooting regardless of head position. Results suggest that head position and pre-contraction may have significant and independent effects on arm positioning.  相似文献   

18.
A pitched visual inducer has a strong effect on the visually perceived elevation of a target in extrapersonal space, and also on the elevation of the arm when a subject points with an unseen arm to the target’s elevation. The manual effect is a systematic function of hand-to-body distance (Li and Matin Vision Research 45:533–550, 2005): When the arm is fully extended, manual responses to perceptually mislocalized luminous targets are veridical; when the arm is close to the body, gross matching errors occur. In the present experiments, we measured this hand-to-body distance effect during the presence of a pitched visual inducer and after inducer offset, using three values of hand-to-body distance (0, 40, and 70 cm) and two open-loop tasks (pointing to the perceived elevation of a target at true eye level and setting the height of the arm to match the elevation). We also measured manual behavior when subjects were instructed to point horizontally under induction and after inducer offset (no visual target at any time). In all cases, the hand-to-body distance effect disappeared shortly after inducer offset. We suggest that the rapid disappearance of the distance effect is a manifestation of processes in the dorsal visual stream that are involved in updating short-lived representations of the arm in egocentric visual perception and manual behavior.  相似文献   

19.
The effect of concurrent visual feedback (CVF) on continuous aiming movements was investigated in the preferred hand of participants of college age (ns = 12 men, 8 women). Participants made continuous rapid reversal movements with a lightweight lever in the sagittal plane. Participants attempted to reach a short target (20 degrees) and a long target (60 degrees) in separate constant practice conditions, but alternated between the two targets in a variable practice condition. Four blocks of practice trials were provided in each condition, with 40 movements made in each. CVF of the position-time trace was provided for the first 20 movements of each block, but was removed for the remaining 20 movements in each block. Movements were more accurate and consistent during constant practice compared to variable practice where the short target was overshot and the long target was undershot. CVF reduced errors in all conditions, compared to movements without CVF, particularly for the short target during variable practice. The results suggest that the interference generated by alternating targets can be modulated by providing visual feedback, but once the visual feedback was removed, errors increased markedly.  相似文献   

20.
The relation between reaction time and the number of elements in a response has been shown to depend on whether simple or choice RT paradigms are employed. The purpose of the present study was to investigate whether advance information about the number of elements is the critical factor mediating the influence between reaction time and response elements. Participants performed aiming movements that varied in terms of the number of elements and movement amplitude. Prior to the stimulus, advance information was given about the number of elements and movement amplitude, movement amplitude only, number of elements only, or no information about the response. Reaction time and movement time to the first target increased as a function of number of elements only when the full response or the number of elements was specified in advance of the stimulus. The implication of these results for current models of motor programming and sequential control of aiming movements are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号