首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The authors investigated the coordination of periodic right-hand tapping with single stimulus-evoked discrete lefthand taps to check for task interactions and a possible relationship between phase resetting (see tapping literature; e.g., J. Yamanishi, M. Kawato, & R. Suzuki, 1979) and phase entrainment (see tremor literature; e.g., R. J. Elble, C. Higgins, & L. Hughes, 1994). The experimental paradigm employs a dual-task condition as used by K. Yoshino, K. Takagi, T. Nomura, S. Sato, and M. Tonoike (2002), and it includes normal tapping and isometric tapping with the authors recording finger positions and ground contact forces. Four different types of coordination schemes were observed in tapping behavior: marginal tapping interaction (MTI), periodic tap retardation (PTR), periodic tap hastening (PTH), and discrete tap entrainment (DTE); MTI and PTR correspond to the phase-resetting effect for the coordination of periodic tapping with single discrete taps. The novel aspect of the study described in this article includes the impact of the periodic tapping on the discrete tap timing and the hastening of the periodic tapping due to the discrete tap behaviors resulting in a synchronized execution of the two concurrent tapping tasks. All participants showed a dominant tapping behavior, but they all used the other nondominant forms of the four reported coordination schemes in some trials too, which reflects possible constraints of the sensorimotor system in handling two competing tasks.  相似文献   

2.
This study addresses the demands of alternating bimanual syncopation, a coordination mode in which the two hands move in alternation while tapping in antiphase with a metronomic tone sequence. Musically trained participants were required to engage in alternating bimanual syncopation and five other coordination modes: unimanual syncopation where taps are made (with the left or right hand) after every tone; unimanual syncopation where taps are made after every other tone; bimanual synchronization with alternating hands; unimanual synchronized tapping with every tone; and unimanual tapping with every other tone. Variability in tap timing was greatest overall for alternating bimanual syncopation, indicating that it is the most difficult. This appears to be due to instability arising from the simultaneous presence of two levels of antiphase coordination (one between the pacing sequence and the hands, the other between the two hands) rather than factors relating to movement frequency or dexterity limits of the nonpreferred hand.  相似文献   

3.
Based on the observation that bimanual finger tapping movements tend toward mirror symmetry with respect to the body midline, despite the synchronous activation of non-homologous muscles, F. Mechsner, D. Kerzel, G. Knoblich, and W. Prinz (2001) [Perceptual basis of bimanual coordination. Nature, 414, 69-73] suggested that the basis of rhythmic coordination is purely spatial/perceptual in nature, and independent of the neuro-anatomical constraints of the motor system. To investigate this issue further, we employed a four finger tapping task similar to that used by F. Mechsner and G. Knoblich (2004) [Do muscle matter in bimanual coordination? Journal of Experimental Psychology: Human Perception and Performance, 30, 490-503] in which six male participants were required to alternately tap combinations of adjacent pairs of index (I), middle (M) and ring (R) fingers of each hand in time with an auditory metronome. The metronome pace increased continuously from 1 Hz to 3 Hz over the course of a 30-s trial. Each participant performed three blocks of trials in which finger combination for each hand (IM or MR) and mode of coordination (mirror or parallel) were presented in random order. Within each block, the right hand was placed in one of three orientations; prone, neutral and supine. The order of blocks was counterbalanced across the six participants. The left hand maintained a prone position throughout the experiment. On the basis of discrete relative phase analyses between synchronised taps, the time at which the initial mode of coordination was lost was determined for each trial. When the right hand was prone, transitions occurred only from parallel symmetry to mirror symmetry, regardless of finger combination. In contrast, when the right hand was supine, transitions occurred only from mirror symmetry to parallel but no transitions were observed in the opposite direction. In the right hand neutral condition, mirror and parallel symmetry are insufficient to describe the modes of coordination since the hands are oriented orthogonally. When defined anatomically, however, the results in each of the three right hand orientations are consistent. That is, synchronisation of finger tapping is determined by a hierarchy of control of individual fingers based on their intrinsic neuro-mechanical properties rather than on the basis of their spatial orientation.  相似文献   

4.
In the cutaneous rabbit effect (CRE), a tactile event (so-called attractee tap) is mislocalized toward an adjacent attractor tap. The effect depends on the time interval between the taps. The authors delivered sequences of taps to the forearm and asked participants to report the location of one of the taps. The authors replicated the original CRE findings and observed a smaller but significant mislocalization when the attractor tap preceded the attractee tap. These results are consistent with the CRE arising from spatiotemporal interactions between the sensory codes for each individual tap. In subsequent experiments, the authors showed that the CRE was not affected by either gaze direction or concurrent auditory temporal information. The authors propose a model that explains the CRE by the spatiotemporal dynamics of an early, unimodal, sensory map.  相似文献   

5.
The origin of the characteristic disturbances of rhythm formation in patients with Parkinson's disease (the hastening phenomenon) was discussed, using a second-order system of the periodic response. The input signal was regarded as a pulse series of a Dirac function. The output process of the system had maximal errors of response at input frequencies of f = omega0/n (n = 1, 2, . . .), where omega0 was the intrinsic frequency of the system. Damping coefficient epsilon represented a function of an inhibitor against these maximal errors and the errors diverged to infinity when epsilon = 0. The solution of this forced oscillation system indicated that the intrinsic oscillation of the system has a possibility to be excited at these critical frequencies f = omega/n. Inferred from data on the tapping test, the frequency of an intrinsic oscillation was 5 Hz in the central nervous system, then the critical frequencies were predicted 5/n = 5, 2.5, . . . Hz. On the tapping test the errors of response become maximum around 2.5 and 5 Hz (taps per second), and their peak heights increased from the minimum in well trained normal subjects to the maximum in patients. An inhibitory mechanism against the maximal error would function well, i.e. epsilon greater than 0, in normal subjects but so insufficiently (epsilon leads to 0) in patients that the excited intrinsic oscillation would control their response directly. Thus some patients could no longer maintain a synchronous tapping response at 2.5 Hz or 5 Hz and showed a hastened tapping of 5 6 Hz independent of the signal frequency.  相似文献   

6.
The authors manipulated the width of a timing target in continuous circle drawing to determine whether a more stringent spatial-timing criterion would produce an increase in participants' (N = 30) temporal variability. They also examined the effect of the computational method of determining cycle duration. There was no effect of spatial precision on temporal variability in circle drawing, and tapping and circle drawing were found to use the same criterion. Those findings lend strong support to the earlier view of R. B. Ivry, R. M. Spencer, H. N. Zelaznik, and J. Diedrichsen (2002), who argued that continuous tasks such as circle drawing are timed differently from discrete-like tasks such as tapping. Therefore, the results of the present study provide support for the event and emergent timing frameworks.  相似文献   

7.
8.
The present study was designed to examine the retention of relative force in the scaling of a serial force pattern in a finger-tapping sequence using an attenuated tap. On practice trials, 12 undergraduate students tapped a force plate connected to strain gauges that gave them feedback about the force. On test trials, participants recalled the force pattern (200 gm-200 gm-200 gm-100 gm) and the intertap interval (400 msec.) practiced during the practice period without the feedback (recalled task). Then, they adaptively produced a halved (halved task) or doubled force profile (doubled task) at the fixed intertap interval. Analyses showed that mean peak forces at the first three tap positions of the tapping sequence undershot the expected forces across all tasks. Hence, the ratios of the forces in Serial Positions 1:4, 2:4, and 3:4 were considerably lower than 2.0. This is a contextual effect suggesting that the last attenuated tap affected the first three taps of the tapping sequence. Thus, because the relative force of movements appears to be a weaker invariant feature than sequencing and relative timing for generalized motor program theory of Schmidt and Lee, this finding does not support the relative force for a generalized motor program.  相似文献   

9.
On a repetitive tapping task, the within-hand variability of intertap intervals is reduced when participants tap with two hands as compared to one-hand tapping. Because this bimanual advantage can be attributed to timer variance (Wing-Kristofferson model, 1973a, b), separate timers have been proposed for each hand, whose outputs are then averaged (Helmuth & Ivry, 1996). An alternative notion is that action timing is based on its sensory reafferences (Aschersleben & Prinz, 1995; Prinz, 1990). The bimanual advantage is then due to increased sensory reafference. We studied bimanual tapping with the continuation paradigm. Participants first synchronized their taps with a metronome and then continued without the pacing signal. Experiment 1 replicated the bimanual advantage. Experiment 2 examined the influence of additional sensory reafferences. Results showed a reduction of timer variance for both uni- and bimanual tapping when auditory feedback was added to each tap. Experiment 3 showed that the bimanual advantage decreased when auditory feedback was removed from taps with the left hand. Results indicate that the sensory reafferences of both hands are used and integrated into timing. This is consistent with the assumption that the bimanual advantage is at least partly due to the increase in sensory reafference. A reformulation of the Wing-Kristofferson model is proposed to explain these results, in which the timer provides action goals in terms of sensory reafferences.  相似文献   

10.
This study examined the effect of learning a complex bimanual coordination task at different movement frequencies. 30 subjects performed 5:3 polyrhythmic tapping at either high, medium, or low movement frequency on a rhythmic synchronization task and then reproduced the polyrhythmic pattern repeatedly in the spontaneous task. Analysis showed that practice on the synchronization task qualitatively changed correct responses into anticipatory ones. The synchronization learning of the polyrhythm caused the anticipatory responses and so, may involve memorization of serial positions within the polyrhythm. Also, more anticipatory responses were indicated in performance at the medium and low frequencies than at the high frequency on the synchronization task. In addition, deviations of taps from expected tapping positions were observed in performance of the spontaneous task at the high frequency. These results suggest that the movement frequency qualitatively influenced the learning of this bimanual coordination. Especially at the high frequency, frequent shifts to other coordination patterns occurred on the spontaneous task. This means that the performance at higher frequency is more strongly affected by entrainment between the two hands.  相似文献   

11.
The present study investigates the contribution of tactile-kinesthetic information to the timing of movements. The relative timing of simultaneous tapping movements of finger and foot (hand-foot asynchrony) was examined in a simple reaction time task and in discrete self-initiated taps (Experiment 1), and in externally triggered synchronization tapping (Experiment 2). We compared the performance of a deafferented participant (IW) to the performance of two control groups of different ages. The pattern of results in control groups replicates previous findings: Whereas positive hand-foot asynchronies (hand precedes foot) are observed in a simultaneous reaction to an auditory stimulus, hand-foot asynchronies are negative with discrete self-initiated as well as auditorily paced sequences of synchronized finger and foot taps. In the first case, results are explained by a simultaneous triggering of motor commands. In contrast, self-initiated and auditorily paced movements are assumed to be controlled in terms of their afferent consequences, as provided by tactile-kinesthetic information. The performance of the deafferented participant differed from that of healthy participants in some aspects. As expected on the basis of unaffected motor functions, the participant was able to generate finger and foot movements in reaction to an external signal. In spite of the lack of movement-contingent sensory feedback, the deafferented participant showed comparable timing errors in self-initiated and regularly paced tapping as observed in control participants. However, in discrete self-initiated taps IW's hand-foot asynchronies were considerably larger than in control participants, while performance did not differ from that of controls in continuous movement generation. These findings are discussed in terms of an internal generation of the movement's sensory consequences (forward-modeling).  相似文献   

12.
When subjects are required to produce short sequences of equally paced finger taps and to accentuate one of the taps, the interval preceding the forceful tap is shortened and the one that immediately follows the accent is lengthened. Assuming that the tapping movements are triggered by an internal clock, one explanation attributes the mistiming of the taps to central factors: The momentary rate of the clock is accelerated or decelerated as a function of motor preparation to, respectively, increase or decrease the movement force. This hypothesis predicts that the interre-sponse intervals measured between either tap movement onsets or movement terminations (taps) will show the same timing pattern. A second explanation for the observed interval effects is that the tapping movements are triggered by a regular internal clock but the timing of the successive taps is altered because the forceful movement is completed in less time than the other tap movements are. This “peripheral” hypothesis predicts regular timing of movement onsets but distorted timing of movement terminations. In the present study, the trajectories of the movements performed by subjects were recorded and the interresponse intervals were measured at the beginning and the end of the tapping movements. The results of Experiment 1 showed that neither model can fully explain the interval effects: The fast forceful movements were initiated with an additional delay that took into account the small execution time of these movements. Experiment 2 reproduced this finding and showed that the timing of the onset and contact intervals did not evolve with the repetition of trial blocks. Therefore, the assumption of an internal clock that would trigger the successive movements must be rejected. The results are discussed in the framework of a modified two-stage model in which the internal clock, instead of triggering the tapping movements, provides target time points at which the movements have to produce their meaningful effects, that is, contacts with the response key. The timing distortions are likely to reflect both peripheral and central components.  相似文献   

13.
When subjects are required to produce short sequences of equally paced finger taps and to accentuate one of the taps, the interval preceding the forceful tap is shortened and the one that immediately follows the accent is lengthened. Assuming that the tapping movements are triggered by an internal clock, one explanation attributes the rnistiming of the taps to central factors: The momentary rate of the clock is accelerated or decelerated as a function of motor preparation to, respectively, increase or decrease the movement force. This hypothesis predicts that the interresponse intervals measured between either tap movement onsets or movement terminations (taps) will show the same timing pattern. A second explanation for the observed interval effects is that the tapping movements are triggered by a regular internal clock but the timing of the successive taps is altered because the forceful movement is completed in less time than the other tap movements are. This "peripheral" hypothesis predicts regular timing of movement onsets but distorted timing of movement terminations. In the present study, the trajectories of the movements performed by subjects were recorded and the interresponse intervals were measured at the beginning and the end of the tapping movements. The results of Experiment 1 showed that neither model can fully explain the interval effects: The fast forceful movements were initiated with an additional delay that took into account the small execution time of these movements. Experiment 2 reproduced this finding and showed that the timing of the onset and contact intervals did not evolve with the repetition of trial blocks. Therefore, the assumption of an internal clock that would trigger the successive movements must be rejected. The results are discussed in the framework of a modified two-stage model in which the internal clock, instead of triggering the tapping movements, provides target time points at which the movements have to produce their meaningful effects, that is, contacts with the response key. The timing distortions are likely to reflect both peripheral and central components.  相似文献   

14.
The authors manipulated the width of a timing target in continuous circle drawing to determine whether a more stringent spatial-timing criterion would produce an increase in participants' (N = 30) temporal variability. They also examined the effect of the computational method of determining cycle duration. There was no effect of spatial precision on temporal variability in circle drawing, and tapping and circle drawing were found to use the same criterion. Those findings lend strong support to the earlier view of R. B. Ivry, R. M. Spencer, H. N. Zelaznik, and J. Diedrichsen (2002), who argued that continuous tasks such as circle drawing are timed differently from discrete-like tasks such as tapping. Therefore, the results of the present study provide support for the event and emergent timing frameworks.  相似文献   

15.
The effects of auditory-motor entrainment have generally been investigated with periodic movements. Previous research has focused on how auditory-motor entrainment is influenced by the temporal structure of rhythms. The present study aimed to investigate whether auditory entrainment improved timing performance of sequential movements with varied path structures, and whether path complexity would affect any possible sustained effect of auditory entrainment. We also investigated whether the sustained effect was moderated by hearing single- vs. multiple-pitch audio prompts. Thirty participants were enrolled to perform a sequential finger-tapping task with discrete targets, in which the algebraic ratio relation of path lengths was manipulated as path complexity. Participants completed three stages per trial: initiation (to introduce the path sequence), entrainment (tapping along with the auditory and visual cues), and timekeeping (repeating the sequence without cues). We found timing improvement in terms of mean asynchronies and absolute interval error decrease after auditory entrainment. Only interval accuracy performance during timekeeping and entrainment was affected by path complexity. Moreover, no clear difference was observed between the rhythm sets in terms of single vs. multiple pitches. In conclusion, we found that phase and interval duration accuracy of predefined isochronous sequential movements with varied path complexity can be improved by auditory entrainment, and that auditory entrainment affects our performance beyond the actual presence of the auditory cue.  相似文献   

16.
Timing variability in continuous drawing tasks has not been found to be correlated with timing variability in repetitive finger tapping in recent studies (S. D. Robertson et al., 1999; H. N. Zelaznik, R. M. C. Spencer, & R. B. Ivry, 2002). Furthermore, the central component of timing variability, as measured by the slope of the timing variance versus the square of the timed interval, differed for tapping and drawing tasks. On the basis of those results, the authors posited that timing in tapping is explicit and as such uses a central representation of the interval to be timed, whereas timing in drawing tasks is implicit, that is, the temporal component is an emergent property of the trajectory produced. The authors examined that hypothesis in the present study by determining the linear relationship between timing variance and squared duration for tapping, circle-drawing, and line-drawing tasks. Participants (N = 50) performed 1 of 5 tasks: finger tapping, line drawing in the x dimension, line drawing in the y dimension, continuous circle drawing timed in the x dimension, or continuous circle drawing timed in the y dimension. The slopes differed significantly between finger tapping, line drawing, and circle drawing, suggesting separable sources of timing variability. The slopes of the 2 circle-drawing tasks did not differ from one another, nor did the slopes of the 2 line-drawing tasks differ significantly, suggesting a shared timing process within those tasks. Those results are evidence of a high degree of specificity in timing processes.  相似文献   

17.
Timing variability in continuous drawing tasks has not been found to be correlated with timing variability in repetitive finger tapping in recent studies (S. D. Robertson et al., 1999; H. N. Zelaznik, R. M. C. Spencer, & R. B. Ivry, 2002). Furthermore, the central component of timing variability, as measured by the slope of the timing variance versus the square of the timed interval, differed for tapping and drawing tasks. On the basis of those results, the authors posited that timing in tapping is explicit and as such uses a central representation of the interval to be timed, whereas timing in drawing tasks is implicit, that is, the temporal component is an emergent property of the trajectory produced. The authors examined that hypothesis in the present study by determining the linear relationship between timing variance and squared duration for tapping, circle-drawing, and line-drawing tasks. Participants (N = 501 performed 1 of 5 tasks: finger tapping, line drawing in the x dimension, line drawing in the y dimension, continuous circle drawing timed in the x dimension, or continuous circle drawing timed in the y dimension. The slopes differed significantly between finger tapping, line drawing, and circle drawing, suggesting separable sources of timing variability. The slopes of the 2 circle-drawing tasks did not differ from one another, nor did the slopes of the 2 line-drawing tasks differ significantly, suggesting a shared timing process within those tasks. Those results are evidence of a high degree of specificity in timing processes.  相似文献   

18.
Repp BH 《Acta psychologica》2006,121(1):81-107
This study investigated whether an auditory distractor (D) sequence affects the timing of self-paced finger tapping. To begin with, Experiment 1 replicated earlier findings by showing that, when taps are synchronized with an isochronous auditory target (T) sequence, an isochronous D sequence of different tempo and pitch systematically modulates the tap timing. The extent of the modulation depended on the relative intensity of the T and D tones, but not on their pitch distance. Experiment 2 then used a synchronization-continuation paradigm in which D sequences of different tempi were introduced only during continuation tapping. Although the D sequences rarely captured the taps completely, they did increase the tapping variability and deviations from the correct tempo. Furthermore, they eliminated the negative correlation between successive inter-tap intervals and led to intermittent phase locking when the tapping period was close to the period of the D sequence. These distractor effects occurred regardless of whether or not the taps generated auditory feedback tones. The distractor effects thus depend neither on the intention to synchronize with a T sequence nor on the simultaneous perception of two auditory sequences. Rather, they seem to reflect a basic attraction of rhythmic movement to auditory rhythms.  相似文献   

19.
Advance planning and execution-time organization of sequences of five finger taps were studied in four experiments. Intertap intervals were required to be equal. In some experimental conditions, one of the taps had to be stronger than the other four. Serial position of the stressed tap, number of alternative stress positions, and tapping rate were manipulated. Time to initiate the sequence after presentation of a reaction stimulus (RT), intertap intervals, and force of the taps were measured. the different effects of stress production and choosing between alternative stress locations on the RT of fast as compared to slow sequences suggest that a plan was selected and activated for the whole sequence only when it had to be executed at a fast rate. Additional organization of the fast sequences during execution was inferred from the intertap intervals, force patterns, and stress location errors, that were all different from those observed in slow sequences. The effects of stress production on timing are discussed in relation to existing timing models.  相似文献   

20.
The present study addressed the development of bimanual interference in children performing a dual motor task, in which each hand executes a different task simultaneously. Forty right-handed children (aged 4, 5-6, 7-8 and 9-11years, ten in each age group) were asked to perform a bimanual task in which they had to tap with a pen using the non-preferred hand and simultaneously trace a circle or a square with a pen using the preferred hand as quickly as possible. Tapping and tracing were also performed unimanually. Differences between unimanual and bimanual performance were assessed for number of taps, length of tap trace and mean tracing velocity. It was assumed that with increasing age, better bimanual coordination would result in better performance on the dual task showing less intermanual interference. The results showed that tapping and tracing performance increased with age, unimanually as well as bimanually, consistent with developmental advancement. However, the percentage of intermanual interference due to bimanual performance was not significantly different in the four age groups. Although performing the dual task resulted in mutual intermanual interference, all groups showed a significant effect of tracing shape. More specifically, all age groups showed a larger percentage decrease in tracing velocity when performing the circle compared to the square in the dual task. The present study reveals that children as young as four years are able to coordinate both hands when tapping and tracing bimanually.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号