首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of the present experiment was to investigate the extent to which subjects can perceive, at very slow velocities, an angular rotation of the support surface about the medio-lateral axis of the ankle, knee, hip, or neck joint when visual cues are not available. Subjects were passively displaced on a slowly rotating platform at .01, .03, and .05 deg/sec. The subjects’ task was to detect movements of the platform in four different postural conditions allowing body oscillations about the ankle, knee, hip, or neck joint. In Experiment 1, subjects had to detect backward and forward rotation (pitching). In Experiment 2, they had to detect left and right rotations of the platform (rolling). In Experiment 3, subjects had to detect both backward/forward and left/right rotations of the platform, with the body fixed and the head either fixed or free to move. Overall, when the body was free to oscillate about the ankle, knee, or hip joints, a similar threshold for movement perception was observed. This threshold was lower for rolling than for pitching. Interestingly, in these postural conditions, an unconscious compensation in the direction opposite to the platform rotation was observed on most trials. The threshold for movement perception was much higher when the head was the only segment free to oscillate about the neck joint. These results suggest that, in static conditions, the otoliths are poor detectors of the direction of gravity forces. They also suggest that accurate perception of body orientation is improved when proprioceptive information can be dynamically integrated.  相似文献   

2.
The purpose of the present experiment was to investigate the extent to which subjects can perceive, at very slow velocities, an angular rotation of the support surface about the medio-lateral axis of the ankle, knee, hip, or neck joint when visual cues are not available. Subjects were passively displaced on a slowly rotating platform at .01, .03, and .05 deg/sec. The subjects' task was to detect movements of the platform in four different postural conditions allowing body oscillations about the ankle, knee, hip, or neck joint. In Experiment 1, subjects had to detect backward and forward rotation (pitching). In Experiment 2, they had to detect left and right rotations of the platform (rolling). In Experiment 3, subjects had to detect both backward/forward and left/right rotations of the platform, with the body fixed and the head either fixed or free to move. Overall, when the body was free to oscillate about the ankle, knee, or hip joints, a similar threshold for movement perception was observed. This threshold was lower for rolling than for pitching. Interestingly, in these postural conditions, an unconscious compensation in the direction opposite to the platform rotation was observed on most trials. The threshold for movement perception was much higher when the head was the only segment free to oscillate about the neck joint. These results suggest that, in static conditions, the otoliths are poor detectors of the direction of gravity forces. They also suggest that accurate perception of body orientation is improved when proprioceptive information can be dynamically integrated.  相似文献   

3.
One important component in the understanding of the control of limb movements is the way in which the central nervous system accounts for joint forces and torques that may be generated not only by muscle actions but by gravity and by passive reactions related to the movements of limb segments. In this study, we asked how the neuromotor system of young infants controls a range of active and passive forces to produce a stereotypic, nonintentional movement. We specifically analyzed limb intersegmental dynamics in spontaneous, cyclic leg movements (kicking) of varying intensity in supine 3-month-old human infants. Using inverse dynamics, we calculated the contributions of active (muscular) and passive (motion-dependent and gravitational) torque components at the hip, knee, and ankle joints from three-dimensional limb kinematics. To calculate joint torques, accurate estimates were needed of the limb's anthropometric parameters, which we determined using a model of the human body. Our analysis of limb intersegmental dynamics explicitly quantified the complex interplay of active and passive forces producing the simple, involuntary kicking movements commonly seen in 3-month-old infants. our results revealed that in nonvigorous kicks, hip joint reversal was the result of an extensor torque due to gravity, opposed by the combined flexor effect of the muscle torque and the total motion-dependent torque. The total motion-dependent torque increased as a hip flexor torque in more vigorous kicks; an extensor muscle torque was necessary to counteract the flexor influences of the total motion-dependent torque and, in the case of large ranges of motion, a flexor gravity torque as well. Thus, with changing passive torque influences due to motions of the linked segments, the muscle torques were adjusted to produce a net torque to reverse the kicking motion. As a consequence, despite considerable heterogeneity in the intensity, range of motion, coordination, and movement context of each kick, smooth trajectories resulted from the muscle torque, counteracting and complementing not only gravity but also the motion-dependent torques generated by movement of the linked segments.  相似文献   

4.
The authors investigated whether visual fixations during a continuous graphical task were related to arm endpoint kinematics, joint motions, or joint control. The pattern of visual fixations across various shapes and the relationship between temporal and spatial events of the moving limb and visual fixations were assessed. Participants (N=16) performed movements of varying shapes by rotating the shoulder and elbow joints in the transverse plane at a comfortable pace. Across shapes, eye movements consisted of a series of fixations, with the eyes leading the hand. Fixations were spatially related to modulation of joint motion and were temporally related to the portions of the movement where curvature was the highest. Gathering of information related to modulation of interactive torques arising from passive forces from movement of a linked system occurred when the velocity of the movement (a) was the lowest and (b) was ahead of the moving limb, suggesting that that information is used in a feedforward manner.  相似文献   

5.
An experiment was conducted to compare the effects of bilateral and unilateral stance on postural fluctuations and intralimb coordination during active balance control. Fifteen participants stood bilaterally and unilaterally while conducting a pointing task with an outstretched arm. Excursion of center of foot pressure (CoP) and limb movements were recorded with a force plate and eight dual-axis accelerometers, respectively. Compared to bilateral stance, unilateral stance resulted in wider CoP trajectories and greater postural fluctuations, especially in the lower limbs. The limb-dependent postural fluctuations during unilateral stance were associated with an increased coupling between the upper limb segments and a decreased coupling between the segments of the stance leg. Unilateral stance further resulted in greater regularity and spectral changes in postural fluctuations of the trunk and lower limb due to increased central oscillations (8-15 Hz). The observed structural differences in postural fluctuations between unilateral and bilateral stance strongly suggested that the postural control system modulates joint stiffness in a stance-dependent manner. Probably, in unilateral stance, attentive control was shifted to the stance leg at the expense of increasing arm stiffness to reduce movement redundancy.  相似文献   

6.
In the present study, 2 related hypotheses were tested: first, that vision is used in a feedforward control mode during precision stepping onto visual targets and, second, that the oculomotor and locomotor control centers interact to produce coordinated eye and leg movements during that task. Participants' (N = 4) eye movements and step cycle transition events were monitored while they performed a task requiring precise foot placement at every step onto irregularly placed stepping stones under conditions in which the availability of visual information was either restricted or intermittently removed altogether. Accurate saccades, followed by accurate steps, to the next footfall target were almost always made even when the information had been invisible for as long as 500 ms. Despite delays in footlift caused by the temporary removal (and subsequent reinstatement) of visual information, the mean interval between the start of the eye movement and the start of the swing toward a target did not vary significantly (p >.05). In contrast, the mean interval between saccade onset away from a target and a foot landing on that target (stance onset) did vary significantly (p <.05) under the different experimental conditions. Those results support the stated hypotheses.  相似文献   

7.
Three experiments were conducted to determine if a representation of the movement environment is functional in the organization and control of limb movements, when direct visual contact with the environment is prevented. In Experiment 1, a visual rearrangement procedure was employed to show that a representation of the environment that provides inaccurate information about the spatial location of a target can disrupt manual target aiming. In Experiment 2, we demonstrated that spatial information about the position of a target can be destroyed by a visual pattern mask, supporting our claim that the representation is visual. A target-cuing procedure was used in Experiment 3 to show that representation of target position can be useful for premovement organization in a targetaiming task. Together our findings suggest that a short-lived visual representation of the movement environment may serve a useful role in the organization and control of limb movements.  相似文献   

8.
Three experiments were conducted to determine if a representation of the movement environment is functional in the organization and control of limb movements, when direct visual contact with the environment is prevented. In Experiment 1, a visual rearrangement procedure was employed to show that a representation of the environment that provides inaccurate information about the spatial location of a target can disrupt manual target aiming. In Experiment 2, we demonstrated that spatial information about the position of a target can be destroyed by a visual pattern mask, supporting our claim that the representation is visual. A target-cuing procedure was used in Experiment 3 to show that representation of target position can be useful for premovement organization in a target-aiming task. Together our findings suggest that a short-lived visual representation of the movement environment may serve a useful role in the organization and control of limb movements.  相似文献   

9.
J R Lackner  P DiZio 《Perception》1988,17(1):71-80
When a limb is used for locomotion, patterns of afferent and efferent activity related to its own motion are present as well as visual, vestibular, and other proprioceptive information about motion of the whole body. A study is reported in which it was asked whether visual stimulation present during whole-body motion can influence the perception of the leg movements propelling the body. Subjects were tested in conditions in which the stepping movements they made were identical but the amount of body displacement relative to inertial space and to the visual surround varied. These test conditions were created by getting the subjects to walk on a rotatable platform centered inside a large, independently rotatable, optokinetic drum. In each test condition, subjects, without looking at their legs, compared, against a standard condition in which the floor and drum were both stationary, their speed of body motion, their stride length and stepping rate, the direction of their steps, and the perceived force they exerted during stepping. When visual surround motion was incompatible with the motion normally associated with the stepping movements being made, changes in apparent body motion and in the awareness of the frequency, extent, and direction of the voluntary stepping movements resulted.  相似文献   

10.
In humans and animals, spatial and temporal information from the nervous system are translated into muscle force enabling movements of body segments. To gain deeper understanding of this translation of information into movements, we investigated the motor control dynamics of isometric contractions in children, adolescents, young adults and older adults. Twelve children, thirteen adolescents, fourteen young adults, and fifteen older adults completed two minutes of submaximal isometric plantar- and dorsiflexion. Simultaneously, sensorimotor cortex EEG, tibialis anterior and soleus EMG and plantar- and dorsiflexion force was recorded. Surrogate analysis suggested that all signals were from a deterministic origin. Multiscale entropy analysis revealed an inverted U-shape relationship between age and complexity for the force but not for the EEG and EMG signals. This suggests that temporal information in from the nervous system is modulated by the musculoskeletal system during the transmission into force. The entropic half-life analyses indicated that this modulation increases the time scale of the temporal dependency in the force signal compared to the neural signals. Together this indicates that the information embedded in produced force does not exclusively reflect the information embedded in the underlying neural signal.  相似文献   

11.
The representation of body orientation and configuration is dependent on multiple sources of afferent and efferent information about ongoing and intended patterns of movement and posture. Under normal terrestrial conditions, we feel virtually weightless and we do not perceive the actual forces associated with movement and support of our body. It is during exposure to unusual forces and patterns of sensory feedback during locomotion that computations and mechanisms underlying the ongoing calibration of our body dimensions and movements are revealed. This review discusses the normal mechanisms of our position sense and calibration of our kinaesthetic, visual and auditory sensory systems, and then explores the adaptations that take place to transient Coriolis forces generated during passive body rotation. The latter are very rapid adaptations that allow body movements to become accurate again, even in the absence of visual feedback. Muscle spindle activity interpreted in relation to motor commands and internally modeled reafference is an important component in permitting this adaptation. During voluntary rotary movements of the body, the central nervous system automatically compensates for the Coriolis forces generated by limb movements. This allows accurate control to be maintained without our perceiving the forces generated.  相似文献   

12.
The ability to adapt is a fundamental and vital characteristic of the motor system. The authors altered the visual environment and focused on the ability of humans to adapt to a rotated environment in a reaching task, in the absence of continuous visual information about their hand location. Subjects could not see their arm but were provided with post trial knowledge of performance depicting hand path from movement onset to final position. Subjects failed to adapt under these conditions. The authors sought to find out whether the lack of adaptation is related to the number of target directions presented in the task, and planned 2 protocols in which subjects were gradually exposed to 22.5° visuomotor rotation. These protocols differed only in the number of target directions: 8 and 4 targets. The authors found that subjects had difficulty adapting without the existence of continuous visual feedback of their performance regardless of the number of targets presented in task. In the 4-target protocol, some of the subjects noticed the rotation and explicitly aimed to the correct direction. The results suggest that real-time feedback is required for motor adaptation to visual rotation during reaching movements.  相似文献   

13.
In studies related to human movement, linked segment models (LSM's) are often used to quantify forces and torques, generated in body joints. Some LSM's represent only a few body segments. Others, for instance used in studies on the control of whole body movements, include all body segments. As a consequence of the complexity of 3-dimensional (3-D) analyses, most LSM's are restricted to one plane of motion. However, in asymmetric movements this may result in a loss of relevant information. The aim of the current study was to develop and validate a 3-D LSM including all body segments. Braces with markers, attached to all body segments, were used to record the body movements. The validation of the model was accomplished by comparing the measured with the estimated ground reaction force and by comparing the torques at the lumbo-sacral joint that resulted from a bottom-up and a top-down mechanical analysis. For both comparisons, reasonable to good agreement was found. Sources of error that could not be analysed this way, were subjected to an additional sensitivity analysis. It was concluded that the internal validity of the current model is quite satisfactory.  相似文献   

14.
In the present study, 2 related hypotheses were tested: first, that vision is used in a feedforward control mode during precision stepping onto visual targets and, second, that the oculomotor and locomotor control centers interact to produce coordinated eye and leg movements during that task. Participants' (N = 4) eye movements and step cycle transition events were monitored while they performed a task requiring precise foot placement at every step onto irregularly placed stepping stones under conditions in which the availability of visual information was either restricted or intermittently removed altogether. Accurate saccades, followed by accurate steps, to the next footfall target were almost always made even when the information had been invisible for as long as 500 ms. Despite delays in footlift caused by the temporary removal (and subsequent reinstatement) of visual information, the mean interval between the start of the eye movement and the start of the swing toward a target did not vary significantly (p > .05). In contrast, the mean interval between saccade onset away from a target and a foot landing on that target (stance onset) did vary significantly (p < .05) under the different experimental conditions. Those results support the stated hypotheses.  相似文献   

15.
In a number of studies, we have demonstrated that the spatial-temporal coupling of eye and hand movements is optimal for the pickup of visual information about the position of the hand and the target late in the hand's trajectory. Several experiments designed to examine temporal coupling have shown that the eyes arrive at the target area concurrently with the hand achieving peak acceleration. Between the time the hand reached peak velocity and the end of the movement, increased variability in the position of the shoulder and the elbow was accompanied by a decreased spatial variability in the hand. Presumably, this reduction in variability was due to the use of retinal and extra-retinal information about the relative positions of the eye, hand and target. However, the hand does not appear to be a slave to the eye. For example, we have been able to decouple eye movements and hand movements using Müller-Lyer configurations as targets. Predictable bias, found in primary and corrective saccadic eye movements, was not found for hand movements, if on-line visual information about the target was available during aiming. That is, the hand remained accurate even when the eye had a tendency to undershoot or overshoot the target position. However, biases of the hand were evident, at least in the initial portion of an aiming movement, when vision of the target was removed and vision of the hand remained. These findings accent the versatility of human motor control and have implications for current models of visual processing and limb control.  相似文献   

16.
The ability to perceive others’ actions and coordinate our own body movements accordingly is essential for humans to interact with the social world. However, it is still unclear how the visual system achieves the remarkable feat of identifying temporally coordinated joint actions between individuals. Specifically, do humans rely on certain visual features of coordinated movements to facilitate the detection of meaningful interactivity? To address this question, participants viewed short video sequences of two actors performing different joint actions, such as handshakes, high fives, etc. Temporal misalignments were introduced to shift one actor’s movements forward or backward in time relative to the partner actor. Participants rated the degree of interactivity for the temporally shifted joint actions. The impact of temporal offsets on human interactivity ratings varied for different types of joint actions. Based on human rating distributions, we used a probabilistic cluster model to infer latent categories, each revealing shared characteristics of coordinated movements among sets of joint actions. Further analysis on the clustered structure suggested that global motion synchrony, spatial proximity between actors, and highly salient moments of interpersonal coordination are critical features that impact judgments of interactivity.  相似文献   

17.
What visual information do children normally require for the control of reaching movements? How is performance affected when children do not have access to the preferred mode of perceptual information? These questions were studied in 28 children who were tested on 3 occasions: at 6, 7, and 8 years of age. The task was to pick beads, 1 at a time, from 1 cup and carry them to another cup. With the aid of a mirror arrangement and a curtain, the amount of visual information was manipulated with regard to both the target and the performing hand. The movements were monitored with an optoelectronic device (SELSPOT II) and analyzed in terms of transport and object-handling phases. Results showed that object handling required visual information on both hand and target. For the transport phase of the movement, visual information on the spatial location of the target was sufficient, and sight of the hand did not improve performance. In contrast to adult subjects, when children did not have access to the required visual information, their performances deteriorated markedly. These results indicate that from the age of 6, children use visual information for control of arm movements in a manner like that of adults, although with less accuracy and speed. However, even 8-year-old children are limited in their ability to use alternative perceptual strategies for movement control, and they therefore become less flexible and more dependent on visual information.  相似文献   

18.
It is well known that long-term use of levodopa by patients with Parkinson's disease causes dyskinesia. Several methods have been proposed for the automatic, unsupervised detection and classification of levodopa induced dyskinesia. Recently, we have demonstrated that neural networks are highly successful to detect dyskinesia and to distinguish dyskinesia from voluntary movements. The aim of this study was to use the trained neural networks to extract parameters, which are important to distinguish between dyskinesia and voluntary movements.Thirteen patients were continuously monitored in a home-like situation performing in about 35 daily life tasks for a period of approximately 2.5 h. Behavior of the patients was measured using triaxial accelerometers, which were placed at six different positions of the body. A neural network was trained to assess the severity of dyskinesia. The neural network was able to assess the severity of dyskinesia and could distinguish dyskinesia from voluntary movements in daily life. For the trunk and the leg, the important parameters appeared to be the percentage of time that the trunk or leg was moving and the standard deviation of the segment velocity of the less dyskinetic leg. For the arm, the combination of the percentage of time, that the wrist was moving, and the percentage of time, that a patient was sitting, explained the largest part of the variance of the output. Dyskinesia differs from voluntary movements in the fact that dyskinetic movements tend to have lower frequencies than voluntary movements and in the fact that movements of different body segments are not well coordinated in dyskinesia.  相似文献   

19.
People can often anticipate the outcome of another person's actions based on visual information available in the movements of the other person's body. We investigated this problem by studying how goalkeepers anticipate the direction of a penalty kick in soccer. The specific aim was to determine whether the information used to anticipate kick direction is best characterized as local to a particular body segment or distributed across multiple segments. In Experiment 1, we recorded the movements of soccer players as they kicked balls into a net. Using a novel method for analyzing motion capture data, we identified sources of local and distributed information that were reliable indicators of kick direction. In Experiments 2 and 3, subjects were presented with animations of kickers' movements prior to foot-to-ball contact and instructed to judge kick direction. Judgments were consistent with the use of distributed information, with a possible small contribution of local information.  相似文献   

20.
The study examined the contribution of various sources of visual information utilised in the control of discrete aiming movements. Subjects produced movements, 15.24 cm in amplitude, to a 1.27 cm target in a movement time of 330 ms. Responses were carried out at five vision-manipulation conditions which allowed the subject complete vision, no vision, vision of only the target or stylus, and a combination of stylus and target. Response accuracy scores indicated that a decrement in performance occurred when movements were completed in the absence of visual information or when only the target was visible during the response. The stylus and the target plus stylus visual conditions led to response accuracy which was comparable to movements produced with complete vision. These results suggest that the critical visual information for aiming accuracy is that of the stylus. These findings are consistent with a control model based on a visual representation of the discrepancy between the position of the hand and the location of the target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号