首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
陈宏  王苏妍 《心理科学进展》2012,20(12):1926-1939
视觉注意瞬脱是指在很短时间内(约500 ms)序列呈现两个目标刺激时,被试对第二个目标正确报告率显著下降的现象。近年来国外注意瞬脱实验研究渐成选择性注意研究领域的热点, 其实验范式疏理为两大类-- 单刺激序列RSVP范式和多刺激序列RSVP范式。综述对两类范式的诸多变式进行了分析与评估, 提出了影响注意瞬脱实验范式发展的四项实验因素和今后视觉注意瞬脱实验范式发展的五种趋势。  相似文献   

2.
Identification accuracy for the second of two target (T2) is impaired when presented shortly after the first (T1). Does this attentional blink (AB) also impair the perception of the order of presentation? In four experiments, three letter targets (T1, T2, T3) were inserted in a stream of digit distractors displayed in rapid serial visual presentation (RSVP), with T3 always presented directly after T2. The T1-T2 lag was varied to assess the perception of T2-T3 temporal order throughout the period of the AB. Factorial manipulation of the presence or absence of distractors before T1 and between T1 and T2 had similar effects on accuracy and on perception of temporal order. It is important to note that perception of temporal order suffered even when accuracy was unimpaired. This pattern of results is consistent with prior-entry theories of the perception of temporal order but not with episodic-integration theories. Simulations based on the Episodic Simultaneous Type, Serial Token (eSTST) model (Wyble, Bowman, & Nieuwenstein, 2009) provided excellent fits to the data except for the condition in which no distractors were presented in the RSVP stream.  相似文献   

3.
When two targets (T1 and T2) are inserted in a rapid stream of visual distractors (RSVP), detection/ identification accuracy of T2 is impaired at intertarget lags shorter than about 500 msec. This phenomenon, the attentional blink (AB), has been regarded as a hallmark of the inability of the visual system to process multiple items. Yet, paradoxically, the AB is much reduced when T2 is presented directly after T1 (known aslag-1 sparing). Because lag-1 sparing is said to depend on observers’ spatial attention being set to process the first target, we predicted that if observers are set to monitor two RSVP streams, they could process more than two items; that is, two instances of lag-1 sparing would be obtained concurrently. The results of three experiments indicated that this was the case. When observers searched for two targets in each of two synchronized RSVP streams, lag-1 sparing occurred concurrently in both streams. These results suggest that the visual system can handle up to four items at one moment under RSVP circumstances.  相似文献   

4.
To study the temporal dynamics and capacity-limits of attentional selection and encoding, researchers often employ the attentional blink (AB) phenomenon: subjects' impaired ability to report the second of two targets in a rapid serial visual presentation (RSVP) stream that appear within 200-500 ms of one another. The AB has now been the subject of hundreds of scientific investigations, and a variety of different dual-target RSVP paradigms have been employed to study this failure of consciousness. The three most common are those where targets are defined categorically from distractors; those where target definition is based on featural information; and those where there is a set switch between T1 and T2, with the first target typically being featurally defined and T2 requiring a detection or discrimination judgment (probe task). An almost universally held assumption across all AB theories is that these three tasks measure the same deficit; however here, using an individual differences approach, we demonstrate that AB magnitude is only related across categorical and featural tasks. Thus, these paradigms appear to reflect a distinct cognitive limitation from that observed under set-switch conditions.  相似文献   

5.
When two masked, to-be-attended targets are presented within approximately 500 msec of each other, accurate report of the second target (T2) suffers more than when targets are presented farther apart in time--an attentional blink (AB). In the present study, the AB was found to be larger when taboo words were presented as a first target (T1), as compared with the AB found when emotionally neutral, negative, or positive words were presented as T1, suggesting that taboo words received preferential attentional processing. Comparable results were also obtained when taboo words were presented as to-be-ignored distractors in single-target rapid serial visual presentation (RSVP). Arousal, but not valence, ratings of the emotional words predicted accuracy on subsequent targets in both dual- and single-task RSVP. Recognition memory for taboo words accounted fully for the negative relationships between arousal ratings and accuracy on subsequent targets, suggesting that arousal-triggered changes in attentional allocation influenced encoding of taboo words at the time they were encountered.  相似文献   

6.
When two targets (T1 and T2) are inserted into a rapid serial visual presentation (RSVP) stream of nontargets, observers are impaired at identifying T2 when it is presented within half a second after T1. This transient drop in performance, or attentional blink (AB), has been attributed to a temporary unavailability of task-critical processing resources. In the present study, we investigated how object-based attention modulates the AB, by presenting four synchronized RSVP streams in the corners of two rectangular bars (e.g., one above and one below fixation). The results from four experiments revealed that the AB increased within short temporal lags (of up to ~400 msec) when T2 was presented on the same, rather than a different, bar as T1 (with T1–T2 spatial distance controlled for). Thus, the AB is seen to spread across entire object groupings, suggesting that the spatiotemporal resolution of attention is modulated by global-object information.  相似文献   

7.
Under conditions of rapid serial visual presentation, subjects display a reduced ability to report the second of two targets(Target2; T2) in a stream of distractors if it appearswithin200-500 msec of Target 1 (Tl). This effect. known as the attentional blink(AB),has been central in characterizing the limits of humans’ ability to consciously perceive stimuli distributed across time. Here, we review theoretical accounts of the AB and examine how they explain key findings in the literature. We conclude that the AB arises from attentional demands of Tl for selection, working memory encoding, episodic registration,and response selection, which prevents this high-level central resource from being applied to T2 at shortT1-T2 lags. Tl processing also transiently impairs the redeployment of these attentional resources to subsequent targets and the inhibition of distractors that appear in close temporal proximity to T2. Although these findings are consistent with a multifactorial account of the AB,they can also be largely explained by assuming that the activation of these multiple processes depends on a common capacity-limited attentional process for selecting behaviorally relevant events presented among temporally distributed distractors. Thus, at its core, the attentional blink may ultimately reveal the temporal limits of the deployment of selective attention.  相似文献   

8.
Identification of the second of two targets is impaired when presented less than about 500 ms after the first. The magnitude of this attentional blink (AB) is known to be modulated by tonic factors (e.g., observer's state of relaxation). The present work examined the effects of a phasic change in observer's state brought about by an alerting stimulus (an aggregate of faint rings) presented in temporal proximity to either letter-target inserted in a temporal stream (RSVP) of digit distractors. In four experiments, identification accuracy of each target was substantially improved by presenting the alerting stimulus either in the target's frame or in the preceding RSVP frame. However, alerting did not modulate the magnitude of the AB. The appearance of an alerting effect on the AB in Experiment 1 was ascribed to a ceiling effect in Experiment 2. Experiment 3 ruled out endogenous temporal cueing effects; Experiment 4 examined the temporal gradient of alerting. Independence of the alerting and AB effects suggests that the alerting stimuli and the letter targets may be processed along distinct visual pathways.  相似文献   

9.
Dux PE  Coltheart V  Harris IM 《Cognition》2006,99(3):355-382
Observers demonstrate an impaired ability to report the second of two targets in a rapid serial visual presentation (RSVP) stream if it appears within 500 ms of the first target--a phenomenon known as the attentional blink. This study investigated the fate of stimuli in dual-target RSVP streams that do not require report--the distractors. In five experiments, observers viewed dual-target RSVP streams where the items flanking Target 1 either had the same identity (repeats) or a different identity (non-repeats). Repeated distractors reduced the attentional blink, but only if two conditions were met (1) the items flanking Target 1 were featurally identical and (2) the distractors were drawn from a different alphanumeric category to the targets (e.g. digits vs. letters). We interpret this reduced blink magnitude in the repeat trials as evidence that in RSVP streams distractor items that appear in close temporal proximity to Target 1 are inhibited and we propose that this inhibition occurs both at the level of alphanumeric features and abstract identities.  相似文献   

10.
The attentional blink (AB) refers to the finding that performance on the second of two targets (T1 and T2) in a rapidly presented stimulus stream is impaired when the targets are presented within 200-500 ms. This study investigates whether a negative attentional set, a form of top-down control, has an additional detrimental effect, and whether its influence is modulated by task demands. A negative attentional set was elicited through presentation of a pre-T1 distractor (D1), which belonged to the same category as T2. The presence of D1 impaired T2 performance, and this negative effect was generally larger inside than outside the AB. Moreover, this D1 effect remained constant or was augmented when the demand on T1 processing was enhanced. These findings demonstrate that a negative attentional set is maintained even though the central system is engaged in the in-depth processing of T1 during the AB.  相似文献   

11.
Several accounts of the attentional blink (AB) have postulated that this dual-target deficit occurs because of limited-capacity attentional resources being devoted to processing the first target at the expense of the second (resource depletion accounts; e.g., Chun & Potter, 1995). Recent accounts have challenged this model (e.g., Di Lollo, Kawahara, Ghorashi, & Enns, 2005; Olivers, van der Stigchel, & Hulleman, 2007), proposing instead that the AB occurs because of subjects’ inability to maintain appropriate levels of attentional control when targets are separated by distractors. Accordingly, the AB is eliminated when three targets from the same attentional set are presented sequentially in a rapid serial visual presentation (RSVP) stream. However, under such conditions poorer identification of the first target is typically observed, hinting at a potential trade-off between the first and subsequent target performances. Consistent with this hypothesis, the present study shows that an AB is observed for successive targets from the same attentional set in an RSVP stream when the first target powerfully captures attention. These results suggest that resource depletion contributes significantly to the AB.  相似文献   

12.
从过度投入理论与激活反弹理论对瓶颈理论的质疑出发,采用ERP技术检验了情绪性注意瞬脱的加工过程及其神经机制。行为结果显示,以恐惧面孔为T1,中性场景图片为T2,则恐惧面孔T1相对中性面孔T1显著降低了中性T2的识别正确率,进而诱发了情绪性注意瞬脱。ERP结果进一步显示,相较于中性面孔T1,恐惧面孔T1诱发的情绪加工影响了代表中枢加工资源的两阶段P3波幅,使得其始终高于代表标准注意瞬脱的中性面孔T1条件和代表非注意瞬脱的单任务基线条件。以上结果证明,情绪性注意瞬脱形成自情绪性T1加工所诱发的中枢资源过度投入,而非源自中枢资源瓶颈。  相似文献   

13.
When two targets are embedded in a rapid serial visual presentation (RSVP) stream of distractors, perception of the second target is impaired if the intertarget lag is relatively short (less than 500 msec). This phenomenon, called attentional blink, has been attributed to a temporal inability of attentional resources. Nevertheless, a recent study found that observers could monitor two RSVP streams concurrently for up to four items presented in close succession, suggesting a much larger visual capacity limit. However, such high-capacity performance could be obtained by a rapid shift of attention, rather than concurrent monitoring of multiple locations. Therefore, the present study examined these alternatives. Results from six experiments indicate that observers can concurrently monitor two noncontiguous locations, even when targets and distractors are from different categories, such as digits, English alphabet letters, Japanese characters, and pseudocharacters. These results can be explained in terms of a modified input-filtering model in which a multidimensional attentional set can be flexibly configured at different spatial locations.  相似文献   

14.
In two experiments, we examined the effects of task and location switching on the accuracy of reporting target characters in an attentional blink (AB) paradigm. Single-character streams were presented at a rate of 100 msec per character in Experiment 1, and successive pairs of characters on either side of fixation were presented in Experiment 2. On each trial, two targets appeared that were either white letters or black digits embedded in a stream of black letter distractors, and they were separated by between zero and five items in the stream (lags 1-6). Experiment 1 showed that report of the first target was least accurate if it immediately preceded the second target and if the two targets were either both letters or both digits (task repetition cost). Report of the second target was least accurate if one or two distractors intervened between the two targets (the U-shaped AB lag effect) and if one target was a letter and the other a digit (task switch cost). Experiment 2 added location uncertainty as a factor and showed similar effects as Experiment 1, with one exception. Lag 1 sparing (the preserved accuracy in reporting the second of two targets if the second immediately follows the first) was completely eliminated when the task required attention switching across locations. Two-way additive effects were found between task switching and location switching in the AB paradigm. These results suggests separate loci for their attentional effects. It is likely that the AB deficit is due mainly to central memory limitations, whereas location-switching costs occur at early visual levels. Task-switching costs occur at an intermediate visual level, since the present task switch involved encoding differences without changes in stimulus-response mapping rules (i.e., the task was character identification for both letters and digits).  相似文献   

15.
Input control theories of the attentional blink (AB) suggest that this deficit results from impaired attentional selection caused by the post-Target 1 (T1) distractor (Di Lollo, Kawahara, Ghorashi, & Enns, 2005; Olivers, van der Stigchel, & Hulleman, 2007). Accordingly, these theories predict that there should be no AB when no distractors intervene between the targets. Contrary to these hypotheses, Dux, Asplund, and Marois (2008) observed an AB (T3 deficit) when three targets, from the same attentional set, were presented successively in a rapid stream of distractors, if subjects increased the resources they devoted to T1 processing. This result is consistent with resource depletion accounts of the AB. However, Olivers, Spalek, Kawahara, and Di Lollo (2009) argue that Dux et al.’s results can be better explained by the relationship between T1 and T2, and by target discriminability effects, rather than by the relationship between T1 and T3. Here, we find that manipulating the resources subjects devote to T1, either exogenously (target perceptual salience) or endogenously (target task relevance), affects T3 performance, even when T2 and target discriminability differences are controlled for. These results support Dux et al.’s conclusion that T1 resource depletion underlies the AB.  相似文献   

16.
Identification of the second of two brief targets is impaired at intertarget lags of less than about 500 msec. We compared two accounts of thisattentional blink (AB) by manipulating the number of digit distractors—and hence the lag—inserted among three letter targets in a rapid serial visual presentation stream of digit distractors. On the resource-depletion hypothesis, longer lags provide more time for processing the leading target, thus releasing resources for the trailing target. On the temporary-loss-of-control (TLC) hypothesis, intervening distractors disrupt the current attentional set, producing a trailing-target deficit. Identification accuracy for trailing targets was unimpaired not only at lag 1 (conventional lag 1 sparing) but also at later lags, if preceded by another target. The results supported the TLC hypothesis but not the resource-depletion hypothesis. We conclude that the AB is caused by a disruption in attentional set when a distractor is presented while the central executive is busy processing a leading target.  相似文献   

17.
The rapid serial visual presentation (RSVP) experiment reported here investigated the role of conceptual interference in the attentional blink (AB). Subjects were presented with RSVP streams that contained five stimuli: Target 1, a distractor, Target 2, a second distractor, and a symbol mask. Target 1 was a green letter, Target 2 was a red letter, and the distractors were either white letters or white digits. The stimuli were presented in a font typically seen on the face of a digital watch. Thus, "S" and "O" were identical to "5" and "0," respectively. This allowed us to present streams that were conceptually different even though featurally identical: The two letter targets were followed by distractors that were recognized either as "5" and "0" or as "S" and "O." The AB was substantially attenuated when subjects were told the distractors were digits rather than letters. This result indicates that conceptual interference plays a role in the AB.  相似文献   

18.
When two targets are embedded in a temporal stream of distractors, second-target identification is initially impaired and then gradually improves as intertarget interval lengthens (attentional blink; AB). According to bottleneck models of the AB, difficulty of first-target processing should modulate the magnitude of the second-target deficit. To test this, we examined whether a data-limited manipulation of T1 difficulty (forward masking) would modulate AB magnitude. In two experiments, we show that data-limited manipulations of T1 difficulty do affect the AB, so long as T1 is not masked by an immediately trailing distractor. When such a trailing item is present, the relationship between T1 difficulty and the AB disappears.  相似文献   

19.
Three experiments using rapid serial visual presentation (RSVP) tested participants' ability to detect targets in streams that are in motion. These experiments compared the ability to identify moving versus stationary RSVP targets and examined the attentional blink with pairs of targets that were moving or stationary. One condition presented RSVP streams in the center of the screen; a second condition used an RSVP that was orbiting in a circle, with participants instructed to follow the stream with their eyes; and a third condition had participants fixate in the middle while observing a circling RSVP stream. Relative to performance in stationary RSVP streams, participants were not markedly impaired in detecting single targets in RSVP streams that were moving, either with or without instructions to pursue the motion. In streams with two targets, a normal attentional blink effect was observed when participants were instructed to pursue the moving stream. When participants had to maintain central fixation as the RSVP stream moved, the attentional blink was nearly absent even when a trailing mask was added. We suggest that the reduction of the attentional blink for moving RSVP streams may reflect a reduced ability to perceive the temporal boundaries of the individual items.  相似文献   

20.
When people monitor the rapid serial visual presentation (RSVP) of stimuli for two targets (T1 and T2), they often miss T2 if it falls into a time window of about half a second after T1 onset, a phenomenon known as the attentional blink (AB). We found that overall performance in an RSVP task was impaired by a concurrent short-term memory (STM) task and, furthermore, that this effect increased when STM load was higher and when its content was more task relevant. Loading visually defined stimuli and adding articulatory suppression further impaired performance on the RSVP task, but the size of the AB over time (i.e., T1-T2 lag) remained unaffected by load or content. This suggested that at least part of the performance in an RSVP task reflects interference between competing codes within STM, as interference models have held, whereas the AB proper reflects capacity limitations in the transfer to STM, as consolidation models have claimed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号