首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Feeding rats high-fat diets for 3 months produces a widespread cognitive deficit that affects performance on a wide range of learning and memory tasks. The present study tested the hypothesis that this effect is related to a fat-induced impairment in glucose metabolism. Following 3 months of dietary intervention (20% by weight fat diets, composed primarily of either beef tallow or soybean oil versus standard laboratory chow), male Long-Evans rats were tested on a variable interval delayed alternation (VIDA) task that measures learning and memory functions that differentially involve specific brain regions. Relative to rats fed chow, rats consuming the high-fat diets were impaired on all aspects of VIDA performance. Following baseline testing, rats were maintained on their respective diets and the effect of glucose administration (100 mg/kg BW; i.p.) was examined. For the next 6 days, animals alternately received injections of saline or glucose 30 min prior to VIDA testing. Glucose treatment improved performance, with the effect being most pronounced at the longer intertrial intervals where task performance is sensitive to hippocampal impairment. Importantly, the beneficial effect of glucose were confined to those animals consuming the high-fat diets and were not observed in rats fed chow. These results demonstrate that glucose administration can overcome those deficits associated with hippocampal function in rats fed high-fat diets and are consistent with the hypothesis that high-fat diets, in part, mediate their effect through the development of insulin resistance and glucose intolerance.  相似文献   

2.
The Dietary Intervention Study in Children (DISC), a 2-arm, multicenter intervention study, examined the efficacy and safety of a diet lower in total fat, saturated fatty acids, and cholesterol than the typical American child's diet. A total of 663 8- to 10-year-old children with elevated low-density lipoprotein cholesterol levels were randomly assigned to either an intervention or a usual-care group. Intervention included group and individual counseling sessions to assist participants in adopting a dietary pattern containing 28% or less of calories from total fat (<8% as saturated fat, up to 9% as polyunsaturated fat, and 11% as monounsaturated fat) and dietary cholesterol intake of less than 75 mg/1,000 kcal. The dietary intervention reduced low-density lipoprotein cholesterol levels, and 3-year results showed no adverse effects for children in the intervention group in terms of academic functioning, psychological symptoms, or family functioning.  相似文献   

3.
It has been suggested that hyperglycemia and insulin resistance triggered by energy-dense diets can account for hippocampal damage and deficits of cognitive behaviour. We wonder if the impairment of learning and memory processes detected in diet-induced obese (DIO) mice is linked to diet composition itself. With this purpose we have evaluated learning performance in mice undergoing a short-term high-fat (HF) treatment, which leads to a pre-obese state characterized by increased adiposity without significant changes of glucose and insulin plasma levels. C57BL/6J mice were fed either a HF (45 kcal% from fat) or control diet (10 kcal% from fat) during 8 weeks. Learning performance was evaluated by using the four-arm baited version of the eight-arm radial maze test (RAM). Mice were trained to learn the RAM protocol and then memory was tested at different time-points. Time spent to consume food placed in baited arms and errors committed to find them were measured in all sessions. DIO mice significantly spent more time in learning the task and made a greater number of errors than controls. Moreover, retention tests revealed that both working and total memory errors were also more numerous in DIO mice. The current results show that short-term DIO impairs spatial learning and suggest that impairment of hippocampal learning elicited by HF diets might be perceptible before metabolic alterations linked to obesity develop.  相似文献   

4.
Effects of ketamine on tunnel maze and water maze performance in the rat   总被引:1,自引:0,他引:1  
The NMDA receptor, which has been implicated in memory formation, is noncompetitively blocked by ketamine. The present study examines the effect of ketamine (0, 3, 6, 12, and 25 mg/kg body wt; ip) on tunnel maze and water maze performance in Wistar rats. In the hexagonal tunnel maze (HTM) high doses of ketamine (12 and 25 mg/kg) decreased locomotor activity. Moreover, ketamine induced perimeter walking (6, 12, and 25 mg/kg) and attenuated exploratory efficiency (25 mg/kg). When the HTM was converted into a modified six-arm radial maze, ketamine impaired short-term but not long-term memory. In the Morris water maze, rats injected with ketamine (12 and 25 mg/kg) acquired a spatial navigation task more slowly than controls. When the escape platform was removed, the drug-treated rats did not preferentially search for it in the area where the platform had been during the acquisition phase. However, when the escape platform was visible, no differences in the performance of ketamine-treated and control rats could be found. In summary, ketamine seems to attenuate some but not all forms of learning in the tunnel maze and it impairs the acquisition of a spatial navigation task.  相似文献   

5.
Aged rats with extensive prior training on the radial maze retain the capacity for accurate spatial working memory (WM) for at least 3 months without practice. To investigate the temporal limits of this influence of prior experience we compared the reacquisition of spatial WM by a group of experienced 21.5-month-old rats to the original acquisition by naive 3-month-old rats. The aged rats had received 225 radial maze tests between 3 and 11 months of age. Despite 10 months without practice the old rats rapidly reacquired critical performance. Their reacquisition was markedly superior to original learning by the young rats, even when delays as long as 5 h were imposed between the rats' fourth and fifth choices during the daily tests in the eight-arm maze. Additional tests showed that neither young nor old rats employed a response strategy to maintain accurate spatial WM performance. Experience clearly confers long-lived protection against the otherwise deleterious effects of aging on spatial WM, but the mechanism by which this influence arises is unknown.  相似文献   

6.
The impact of an acute circadian disruption on learning and memory in male and female rats was examined. Circadian disruption was elicited using a brief series of photoperiod shifts. Previous research using male rats showed that acute circadian disruption during acquisition of a spatial navigation task impaired long-term retention and that chronic circadian disruption impaired acquisition of the same task. However, the long-term effects of acute circadian disruption following circadian re-entrainment and whether sex differences in response to circadian disruption exist are still unknown. For the present study, rats were trained on the standard, spatial version of the Morris water task (MWT) and a visual discrimination task developed for the eight-arm radial maze. After reaching asymptotic performance, behavioural training was terminated and the experimental group experienced a series of photoperiod shifts followed by circadian re-entrainment. Following circadian re-entrainment, the subjects were given retention tests on the MWT and visual discrimination task. Following retention testing, an extra-dimensional shift using the eight-arm radial maze was also performed. An acute episode of circadian disruption elicited via photoperiod shifts negatively impacted retention of spatial memory in male and female rats. Retention of the visual discrimination task and the ability to detect extra-dimensional shifts were not impaired. The observed impairments on the MWT indicate that hippocampal representations are susceptible to a small number of photoperiod shifts even if the association is acquired prior to rhythm manipulation and retention is assessed following rhythm stabilization. Effects were limited to a hippocampus-dependent task, indicating that impairments are specific, not global.  相似文献   

7.
Intradentate injection of colchicine is one of the techniques used to destroy granule cells. This study compared the behavioral effects of various amounts of colchicine (1.0, 3.0, and 6.0 microg; Col 1, Col 3, and Col 6, respectively) injected into the dentate gyrus of adult Long-Evans male rats. Starting 10 days after lesion surgery, behavioral testing assessed home-cage and open-field locomotion, alternation in a T-maze, water-maze, and radial-maze learning according to protocols placing emphasis on reference, and working memory. All of these tasks are sensitive to hippocampal disruption. Histological verifications showed that the extent of the lesions depends on the dose of colchicine (index of dentate gyrus shrinkage: -33% in Col 1, -54% in Col 3, and -67% in Col 6 rats). Colchicine dose-dependently increased nocturnal home cage activity (an effect found 10 days but not 5 months after surgery), but had no significant effect on open-field locomotion or T-maze alternation. A dose-dependent reference memory impairment was found during the acquisition of spatial navigation in the water maze; Col 3 and Col 6 rats were more impaired than Col 1 rats. During the probe trial (platform removed), control rats spent a longer distance swimming over the platform area than all rats with colchicine lesions. In the working memory version of the test, all rats with colchicine lesions showed significant deficits. The deficits were larger in Col 3 and Col 6 rats compared to Col 1 rats. The lesions had no effect on swimming speed. In the radial-maze test, there was also a dose-dependent working memory impairment. However, reference memory was disrupted in a manner that did not differ among the three groups of lesioned rats. Our data are in line with the view that the dentate gyrus plays an important role in the acquisition of new information and is an integral neural substrate for spatial reference and spatial working memory. They also suggest that damage to granule cells might have more pronounced effects on reference than on working memory in the radial maze. Finally, they demonstrate that part of the variability in the conclusions from previous experiments concerning the role of granule cells in cognitive processes, particularly in spatial learning and memory, may be due to the type of tests used and/or the extent of the damage produced.  相似文献   

8.
Transient deficits have been reported after unilateral entorhinal cortex (EC) lesion. To determine whether there is a more persistent deficit, adult male Sprague–Dawley rats with electrolytic or sham lesions of the left entorhinal cortex were examined on acquisition of a modified working memory task in the Morris water maze. This delayed matching-to-sample task, with a 1-h intertrial interval, reveals a significant deficit in total distance to platform in both presentation (Trial 1) and matching (Trial 2) in the rats with entorhinal lesions. We have also found that this test can be used to assess significant deficits in perseveration (repeated nonproductive movement) in rats with entorhinal lesions. The deficits can be seen up to 16 days postinjury. Administration of ganglioside GM1 resulted in a moderate improvement in performance in both water maze measures analyzed. All groups (sham operated, lesion with saline treatment, and lesion with ganglioside GM1 treatment) were given three other tests, which were used to evaluate possible contributing factors to deficient water maze performance. A one-trial test for exploration of novel objects revealed no significant, simple working memory deficit in any group. Plus maze testing, to assess possible differences in levels of anxiety or increased activity as a component of water maze performance, also revealed no differences in the three groups. All groups were also similar in motor activity, shown by monitoring of activity levels. The worsened water maze performance observed in rats with EC lesion may be related to deficits in working memory ability within the framework of acquisition of a more complex spatial learning task.  相似文献   

9.
Activity dependent calcium entry into neurons can initiate a form of synaptic plasticity called long-term potentiation (LTP). This phenomenon is considered by many to be one possible cellular mechanism underlying learning and memory. The calcium entry that induces this phenomenon can occur when N-methyl-D-aspartate receptors (NMDARs) and/or voltage-dependent calcium channels (VDCCs) are activated. While much is known about synaptic plasticity and the mechanisms that are triggered by activation of these two Ca(2+) channels, it is unclear what roles they play in learning. To better understand the role activation of these channels may play in learning we systemically administered pharmacological antagonists to block NMDARs, VDCCs, or both during training trials and retention tests in a radial arm maze task. Wistar rats injected with the NMDAR antagonist MK-801 (0.1mg/kg) were impaired in the acquisition of this task. In contrast, rats injected with verapamil (10mg/kg), an antagonist to VDCCs, acquired the task at the same rate as control animals, but were impaired on a 10-day retention test. A group of animals injected with both antagonists were unable to learn the task. The results suggest that each of the calcium channels and the processes they trigger are involved in a different stage of memory formation or expression.  相似文献   

10.
Nurr1 expression is up-regulated in the brain following associative learning experiences, but its relevance to cognitive processes remains unclear. In these studies, rats initially received bilateral hippocampal infusions of control or antisense oligodeoxynucleotides (ODNs) 1 h prior to training in a holeboard spatial discrimination task. Such pre-training infusions of nurr1 antisense ODNs caused a moderate effect in learning the task and also impaired LTM tested 7 d later. In a second experiment, ODN infusions were given immediately after the animals had received two sessions of training, during which all animals showed normal learning. Although antisense treated rats were significantly impaired during the post-infusion stages of acquisition of the task, no group differences were observed during the LTM test given 7 d later. These animals were subjected 3 d later to reversal training in the same maze in the absence of any additional treatments. Remarkably, rats previously treated with antisense ODNs displayed perseveration: The animals were fixated with the previously learned pattern of baited holes, causing them to be significantly impaired in the extinction of acquired spatial preferences and future learning. We postulate that Nurr1 function in the hippocampus is important for normal cognitive processes.  相似文献   

11.
Although high levels of anxiety might be expected to negatively influence learning and memory, it remains to be shown whether individual differences in anxiety may influence spatial learning and memory in outbred rat populations. We have studied this possibility in male Wistar rats whose levels of anxiety were first characterized as either high (HA) or low (LA) according to their behavior in the elevated plus maze or in the open field test. Subsequently, their performance in the Morris water maze was studied, a task dependent on hippocampal activity. Interestingly, LA rats showed a faster acquisition and better memory in the water maze when compared to HA rats. Indeed, this difference in performance could mainly be attributed to the increase in thigmotactic behavior (swimming in circles close to the maze walls) displayed by HA rats during spatial navigation. Glucocorticoids are known to affect the state of anxiety and the hippocampus is the main target of glucocorticoids in the brain. Hence, we investigated whether the hippocampal expression of the two classical corticosteroid receptors, mineralocorticoid (MR) and glucocorticoid (GR) differed in the two groups of rats. We found that LA rats displayed higher hippocampal expression of MR but not GR than HA rats. Indeed, the expression levels for these receptors were positively correlated with the amount of time spent by the animals in the open arms of the elevated plus maze. Moreover, we present evidence that the levels of anxiety quantified in the first stages of our study constitute a trait rather than a state. Taken together, this study has generated evidence of a close interaction between the anxiety trait, hippocampal MR expression and the learning abilities of individuals in stressful spatial orientation tasks.  相似文献   

12.
A reduction in the activity of cytochrome oxidase, a respiratory chain enzyme, has been recently identified in mitochondria from blood platelets and postmortem brain tissue from Alzheimer's disease (AD) patients. We have developed an animal model of this deficit in rats by chronic subcutaneous infusion of sodium azide, a selective inhibitor of cytochrome oxidase, delivered via Alzet 2ML4 osmotic minipumps. In previous work, azide-treated rats were impaired in an appetitively motivated spatial learning task, the radial arm maze. In the present investigation, we tested male Sprague-Dawley rats (350-400 g), which were tonically infused with azide or saline, on an aversively motivated spatial task, the Morris water maze. Azide-treated rats were impaired on both acquisition and retention of this task, without showing evidence of a motor impairment. Thus, the present results are consistent with previous findings showing that chronic azide treatment produces a learning and memory deficit. These findings strengthen the hypothesis that azide treatment in rats produces a useful animal model of some aspects of AD.  相似文献   

13.
14.
Conventional lesion methods have shown that damage to the rodent hippocampus can impair previously acquired spatial memory in tasks such as the water maze. In contrast, work with reversible lesion methods using a different spatial task has found remote memory to be spared. To determine whether the finding of spared remote spatial memory depends on the lesion method, we reversibly inactivated the hippocampus with lidocaine either immediately (0-DAY) or 1 mo (30-DAY) after training in a water maze. For both the 0-DAY and 30-DAY retention tests, rats that received lidocaine infusions exhibited impaired performance. In addition, when the 0-DAY group was retested 2 d later, (when the drug was no longer active), the effect was reversed. That is, rats that had previously received lidocaine performed as well as control rats did. These findings indicate that the rodent hippocampus is important for both recent and remote spatial memory, as assessed in the water maze. What determines whether remote spatial memory is preserved or impaired following disruption of hippocampal function appears to be the type of task used to assess spatial memory, not the method used to disrupt the hippocampus.  相似文献   

15.
Several series of experiments were designed to compare the effects of selective lesions of the fimbria or of thalamic nuclei on three different tasks involving working memory in rats: object recognition, place recognition, and the radial arm maze test. The main effects of fimbria lesions were as follows: they produced deficits in the radial maze; object recognition was spared or even facilitated, whereas place recognition was impaired. Electrolytic lesions of either centromedian-parafascicularis (CM-Pf) or dorsomedialis (DM) nuclei produced highly significant deficits in the radial maze test but spared object and place recognition. Ibotenate lesions of the CM-Pf had no effect on any test, which means that the critical structure in the effects of the electrolytic lesions of the CM-Pf was the fasciculus retroflexus (FR). These data may contribute two main points to animal models of hippocampal and thalamic amnesia: (1) different forms of working memory in rats might have different neural bases and (2) the FR may be involved in learning and memory processes.  相似文献   

16.
Wistar rats, treated with the GABA(A) receptor agonist muscimol, were used to investigate the role of the hippocampal-prelimbic cortical (Hip-PLC) circuit in spatial learning in the Morris water maze task, and in passive avoidance learning in the step-through task. In the water maze task, animals were trained for three consecutive days and tested 24 h after the end of training. In the step-through task, the animals were trained once and tested 24h after training. On the training days, daily infusion of muscimol (0.5 microg/0.25 microl) was given (1) bilaterally to the ventral hippocampus (vHip), (2) bilaterally to the prelimbic cortex (PLC), (3) to the unilateral vHip and the ipsilateral PLC, or (4) for disconnecting the Hip-PLC circuit, to both the unilateral vHip and the contralateral PLC 30 min before training. The results showed that inhibition of the vHip resulted in disruption of performance in both tasks. Inhibition of the PLC produced impaired water maze performance, but had no effect on the step-through task. Disconnection of the Hip-PLC circuit produced similar effects to PLC inhibition. However, simultaneous inhibition of the unilateral vHip and the ipsilateral PLC had little effect on performance of the water maze task. The results suggested that spatial learning depends on the Hip-PLC circuit, whereas passive avoidance learning is independent of this circuit.  相似文献   

17.
Place learning is impaired when a single plus maze is moved between adjacent locations 33-120 cm apart. This maze translation creates distinct start locations but maintains a single goal location with respect to distal cues. Hippocampal cell recording data suggest the majority of place fields are tied to apparatus boundaries, not to distal cues, when an apparatus is moved these distances to the left or right. Thus, rats may fail to appreciate the existence of multiple start locations with respect to distal cues when the maze is moved in this way and their start location on the surface is constant. Performance on the single plus maze problem was improved when texture cues were correlated with different start locations. Place learning was supported when multiple start locations were provided on a single large surface (double plus maze), even though rats did not explore the entire surface. Place learning was also supported when random extensions were added to a double plus maze such that start locations, relative to surface boundaries, were not informative as to goal location. This outcome suggests sensitivity to multiple start locations is required for distal cue use in translational place problems.  相似文献   

18.
Recently, the vasopressin (AVP) innervation in the rat brain was shown to be restored in senescent rats following long-term testosterone administration. In order to investigate whether this restoration is accompanied by an improvement in learning and memory, both sham- and testosterone-treated young (4.5 months), middle-aged (20 months), and aged (31 months) male Brown-Norway rats were tested in a Morris water maze. All animals learned to localize a cued platform equally well, indicating that the ability to learn this task was not affected by sensory, motoric, or motivational changes with aging or testosterone treatment. There were no significant differences in retention following cue training. Subsequent training with a hidden platform in the opposite quadrant of the pool (place training) revealed impaired spatial learning in middle-aged and aged animals. Retention following place training was significantly impaired in the sham-treated aged rats as compared with sham-treated young rats. Testosterone treatment did not improve spatial learning nor retention of spatial information, but, on the contrary, impaired retention in young and middle-aged animals. The present results confirm earlier reports on an impairment of spatial learning and memory in senescent rats but fail to support a role of decreased plasma testosterone levels and central AVP innervation in this respect.  相似文献   

19.
Substantial work has shown that rats although identical in stock, sex, age, and housing conditions can differ considerably in terms of behavior and physiology. Such individual differences, which can be detected by specific behavioral screening tests, are rather stable, that is, they probably reflect a behavioral disposition or trait. Here, we asked whether and how such differences might affect performance in a task of spatial learning and memory, the radial maze. As in our previous work, we used the degree of rearing activity in a novel open field to assign male adult outbred Wistar rats into those with high versus low rearing activity (HRA/LRA rats). They were then tested in a plus-maze for possible differences in anxiety-related behavior. Finally, and most importantly, they were food deprived and underwent maze training using an 8-arm radial maze with four non-baited and four baited arms. One of these arms consistently contained a larger bait size than the other three. In the open field, HRA rats not only showed more rearing behavior, but also more locomotor activity than LRA rats. In the plus-maze, HRA rats again showed more locomotion, but did not differ in open arm time or percentage of open arm entries, that is, conventional measures of anxiety-related behavior. In the radial maze, HRA rats consistently needed less time to consume all pellets than LRA rats, which was due to faster locomotion on the arms and less time spent at the food pits (especially in baited arms) of HRA rats. During the initial days of training, they were also more efficient in obtaining all food pellets available. Furthermore, HRA rats visited more arms and made relatively less reference memory errors than LRA rats. This allowed them to forage food quickly, but was paralleled by more working memory errors than in LRA rats. In general, working memory errors were more frequent in the arm with the large bait size, but there were no indications that HRA and LRA rats responded differently dependent on reward size. Finally, LRA rats lost slightly more weight than HRA rats during the period of food deprivation. These results are discussed with respect to the role of cognitive and motivational mechanisms, which as subject-inherent factors can contribute substantially to inter-individual variability in the radial maze.  相似文献   

20.
Sprague-Dawley rats were used to study the effects of ibotenic acid lesions of the anterior (A.Th.) and the dorsomedial (MD) thalamic nuclei on learning and memory. Memory was assessed by employing a temporal alternation task in a straight alley with varying intertrial intervals. In addition, spatial orientation and response flexibility were evaluated on a radial maze and on a spatial reversal task (SSDR). The results indicated that MD rats required more trials to learn the temporal alternation task and exhibited impaired performance compared to A.Th. and control groups at the shortest delay (15 s). In contrast, compared to the control group, A.Th. subjects which required less trials to master the task and exhibited normal performance at the 15-s delay were impaired when the intertrial interval was increased to 45 s. Whatever the lesion, no impairments were found in the SSDR or the radial maze while only MD lesions were found to result in a night hyperactivity associated with greater food and water consumptions. These findings indicate that A.Th. and MD are differentially involved in learning and memory processes. It is suggested that the MD is mostly involved in registering new information while the A.Th. plays a role in the maintenance of information over time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号