首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In 2 experiments involving computer-rendered versions of single shapes or "geons," the extent to which depth rotation affects the visual discrimination performance of pigeons in both go/no-go and forced-choice tasks was documented. The pigeons were able to recognize geons at most rotations in depth; however, the pigeons' recognition performance was better at the training view than at most other views. Aspects of these results are both consistent with and problematic for object-centered and viewer-centered theories of object recognition.  相似文献   

2.
In three experiments, we explored how pigeons use edges, corresponding to orientation and depth discontinuities, in visual recognition tasks. In experiment 1, we compared the pigeon's ability to recognize line drawings of four different geons when trained with shaded images. The birds were trained with either a single view or five different views of each object. Because the five training views had markedly different appearances and locations of shaded surfaces, reflectance edges, etc, the pigeons might have been expected to rely more on the orientation and depth discontinuities that were preserved over rotation and in the line drawings. In neither condition, however, was there any transfer from the rendered images to the outline drawings. In experiment 2, some pigeons were trained with line drawings and shaded images of the same objects associated with the same response (consistent condition), whereas other pigeons were trained with a line drawing and a shaded image of two different objects associated with the same response (inconsistent condition). If the pigeons perceived any correspondence between the stimulus types, then birds in the consistent condition should have learned the discrimination more quickly than birds in the inconsistent condition. But, there was no difference in performance between birds in the consistent and inconsistent conditions. In experiment 3, we explored pigeons' processing of edges by comparing their discrimination of shaded images or line drawings of four objects. Once trained, the pigeons were tested with planar rotations of those objects. The pigeons exhibited different patterns of generalization depending on whether they were trained with line drawings or shaded images. The results of these three experiments suggest that pigeons may place greater importance on surface features indicating materials, such as food or water. Such substances do not have definite boundaries cued by edges which are thought to be central to human recognition.  相似文献   

3.
PIGEONS ARE SENSITIVE TO THE SPATIAL ORGANIZATION OF COMPLEX VISUAL STIMULI   总被引:1,自引:0,他引:1  
Abstract— Two experiments investigated the role of spatial organisation in the discrimination and generalization of complex visual stimuli by pigeons. In Experiment 1, after pigeons had been trained to discriminate line drawings of four objects, they were tested with novel pictures in which the same component parts of the objects were spatially rearranged. The spatially scrambled pictures led to a dramatic drop in recognition accuracy, hut responding remained above chance. In Experiment 2, pigeons reached a high level of discriminative performance when required to choose among four different spatial arrangements of the same object parts. These results confirm Cerella's (1980) conclusion that pigeons discriminate the component parts of complex visual stimuli, but. unless it is assumed that the scrambling deleted or created emergent features, the results disconfirm his conclusion that spatial organization plays no role in pigeons' picture perception.  相似文献   

4.
Effects of occlusion on pigeons' visual object recognition   总被引:2,自引:0,他引:2  
DiPietro NT  Wasserman EA  Young ME 《Perception》2002,31(11):1299-1312
Casual observation suggests that pigeons and other animals can recognize occluded objects; yet laboratory research has thus far failed to show that pigeons can do so. In a series of experiments, we investigated pigeons' ability to 'name' shaded, textured stimuli by associating each with a different response. After first learning to recognize four unoccluded objects, pigeons had to recognize the objects when they were partially occluded by another surface or when they were placed on top of another surface; in each case, recognition was weak. Following training with the unoccluded stimuli and with the stimuli placed on top of the occluder, pigeons' recognition of occluded objects dramatically improved. Pigeons' improved recognition of occluded objects was not limited to the trained objects but transferred to novel objects as well. Evidently, the recognition of occluded objects requires pigeons to learn to discriminate the object from the occluder; once this discrimination is mastered, occluded objects can be better recognized.  相似文献   

5.
We tested two pigeons in a continuously streaming digital environment. Using animation software that constantly presented a dynamic, three‐dimensional (3D) environment, the animals were tested with a conditional object identification task. The correct object at a given time depended on the virtual context currently streaming in front of the pigeon. Pigeons were required to accurately peck correct target objects in the environment for food reward, while suppressing any pecks to intermixed distractor objects which delayed the next object's presentation. Experiment 1 established that the pigeons’ discrimination of two objects could be controlled by the surface material of the digital terrain. Experiment 2 established that the pigeons’ discrimination of four objects could be conjunctively controlled by both the surface material and topography of the streaming environment. These experiments indicate that pigeons can simultaneously process and use at least two context cues from a streaming environment to control their identification behavior of passing objects. These results add to the promise of testing interactive digital environments with animals to advance our understanding of cognition and behavior.  相似文献   

6.
Three experiments examined pigeon discrimination of computer-generated three-dimensional (3-D) projections of cube and pyramid objects. Four pigeons were tested using a go/no-go procedure involving static and dynamically rotating presentations of these stimuli. Transfer tests with different types of rotational and featural transformations suggested the pigeons may have used a 3-D representation of the objects as their primary means of performing the discrimination. The comparative implications for object and motion perception in animals are considered.  相似文献   

7.
Two experiments examined the discrimination by pigeons of relative motion using computer-generated video stimuli. Using a go/no-go procedure, pigeons were tested with video stimuli in which the camera's perspective went either "around" or "through" an approaching object in a semi-realistic context. Experiment 1 found that pigeons could learn this discrimination and transfer it to videos composed from novel objects. Experiment 2 found that the order of the video's frames was critical to the discrimination of the videos. We hypothesize that the pigeons perceived a three-dimensional representation of the objects and the camera's relative motion and used this as the primary basis for discrimination. It is proposed that the pigeons might be able to form generalized natural categories for the different kinds of motions portrayed in the videos. Accepted after revision: 23 March 2001 Electronic Publication  相似文献   

8.
Participants performed two object-matching tasks for novel, non-nameable objects consisting of geons. For each original stimulus, two transformations were applied to create comparison stimuli. In the categorical transformation, a geon connected to geon A was moved to geon B. In the coordinate transformation, a geon connected to geon A was moved to a different position on geon A. The Categorical task consisted of the original and the categorically transformed objects. The Coordinate task consisted of the original and the coordinately transformed objects. The original object was presented to the central visual field, followed by a comparison object presented to the right or left visual half-fields (RVF and LVF). The results showed an RVF advantage for the Categorical task and an LVF advantage for the Coordinate task. The possibility that categorical and coordinate spatial processing subsystems would be basic computational elements for between- and within-category object recognition was discussed.  相似文献   

9.
The speed and accuracy of perceptual recognition of a briefly presented picture of an object is facilitated by its prior presentation. Picture priming tasks were used to assess whether the facilitation is a function of the repetition of: (a) the object's image features (viz., vertices and edges), (b) the object model (e.g., that it is a grand piano), or (c) a representation intermediate between (a) and (b) consisting of convex or singly concave components of the object, roughly corresponding to the object's parts. Subjects viewed pictures with half their contour removed by deleting either (a) every other image feature from each part, or (b) half the components. On a second (primed) block of trials, subjects saw: (a) the identical image that they viewed on the first block, (b) the complement which had the missing contours, or (c) a same name-different exemplar of the object class (e.g., a grand piano when an upright piano had been shown on the first block). With deletion of features, speed and accuracy of naming identical and complementary images were equivalent, indicating that none of the priming could be attributed to the features actually present in the image. Performance with both types of image enjoyed an advantage over that with the different exemplars, establishing that the priming was visual rather than verbal or conceptual. With deletion of the components, performance with identical images was much better than that with their complements. The latter were equivalent to the different exemplars, indicating that all the visual priming of an image of an object is through the activation of a representation of its components in specified relations. In terms of a recent neural net implementation of object recognition (Hummel & Biederman, in press), the results suggest that the locus of object priming may be at changes in the weight matrix for a geon assembly layer, where units have self-organized to represent combinations of convex or singly concave components (or geons) and their attributes (e.g., aspect ratio, orientation, and relations with other geons such as TOP-OF). The results of these experiments provide evidence for the psychological reality of intermediate representations in real-time visual object recognition.  相似文献   

10.
Pigeons were trained to discriminate between stimuli constructed using five orthogonal two-valued features. The stimuli consisted of stylized monochrome drawings of seeds. Two different training procedures (conditional and simultaneous discrimination) were used. In the first two experiments, the discrimination required was between polymorphous categories, in which a positive stimulus was defined as one in which three or more of the five features took their positive values. Discrimination in both experiments was imperfect; the pigeons' behaviour only came under the control of a subset of the available features (one to three in Experiment 1, three or four in Experiment 2). In Experiment 3, single features had to be discriminated, while the remaining features varied. It was found that all five features of the “seed” stimuli could be discriminated, but one of them was exceptionally difficult. The results show that pigeons do not reliably use all the features available to them when making category discriminations. This casts doubts on feature analysis as a basis for the excellent performance pigeons show when required to discriminate between categories of natural objects.  相似文献   

11.
To explore whether effects observed in human object recognition represent fundamental properties of visual perception that are general across species, the authors trained pigeons (Columba livia) and humans to discriminate between pictures of 3-dimensional objects that differed in shape. Novel pictures of the depth-rotated objects were then tested for recognition. Across conditions, the object pairs contained either 0, 1, 3, or 5 distinctive parts. Pigeons showed viewpoint dependence in all object-part conditions, and their performance declined systematically with degree of rotation from the nearest training view. Humans showed viewpoint invariance for novel rotations between the training views but viewpoint dependence for novel rotations outside the training views. For humans, but not pigeons, viewpoint dependence was weakest in the 1-part condition. The authors discuss the results in terms of structural and multiple-view models of object recognition.  相似文献   

12.
Light is the origin of vision. The pattern of shading reflected from object surfaces is one of several optical features that provide fundamental information about shape and surface orientation. To understand how surface and object shading is processed by birds, six pigeons were tested with differentially illuminated convex and concave curved surfaces in five experiments using a go/no-go procedure. We found that pigeons rapidly learned this type of visual discrimination independent of lighting direction, surface coloration and camera perspective. Subsequent experiments varying the pattern of the lighting on these surfaces through changes in camera perspective, surface height, contrast, material specularity, surface shape, light motion, and perspective movement were consistent with the hypothesis that the pigeons were perceiving these illuminated surfaces as three-dimensional surfaces containing curved shapes. The results suggest that the use of relative shading for objects in a visual scene creates highly salient features for shape processing in birds.  相似文献   

13.
To examine if animals could learn action-like categorizations in a manner similar to noun-based categories, eight pigeons were trained to categorize rates of object motion. Testing 40 different objects in a go/no-go discrimination, pigeons were first trained to discriminate between fast and slow rates of object rotation around their central y-axis. They easily learned this velocity discrimination and transferred it to novel objects and rates. This discrimination also transferred to novel types of motions including the other two axes of rotation and two new translations around the display. Comparable tests with rapid and slow changes in the objects' size, color, and shape failed to support comparable transfer. This difference in discrimination transfer between motion-based and property-based changes suggests the pigeons had learned motion concept rather than one based on change per se. The results provide evidence that pigeons can acquire an understanding of motion-based actions, at least with regard to the property of object velocity. This may be similar to our use of verbs and adverbs to categorize different classes of behavior or motion (e.g., walking, jogging, or running slow vs. fast).  相似文献   

14.
The authors investigated the pigeon's ability to generalize object discrimination performance to smaller and larger versions of trained objects. In Experiment 1, they taught pigeons with line drawings of multipart objects and later tested the birds with both larger and smaller drawings. The pigeons exhibited significant generalization to new sizes, although they did show systematic performance decrements as the new size deviated from the original. In Experiment 2, the authors tested both linear and exponential size changes of computer-rendered basic shapes to determine which size transformation produced equivalent performance for size increases and decreases. Performance was more consistent with logarithmic than with linear scaling of size. This finding was supported in Experiment 3. Overall, the experiments suggest that the pigeon encodes size as a feature of objects and that the representation of size is most likely logarithmic.  相似文献   

15.
The purpose of the present investigation was to determine whether the orientation between an object's parts is coded categorically for object recognition and physical discrimination. In three experiments, line drawings of novel objects in which the relative orientation of object parts varied by steps of 30 degrees were used. Participants performed either an object recognition task, in which they had to determine whether two objects were composed of the same set of parts, or a physical discrimination task, in which they had to determine whether two objects were physically identical. For object recognition, participants found it more difficult to compare the 0 degrees and 30 degrees versions and the 90 degrees and 60 degrees versions of an object than to compare the 30 degrees and 60 degrees versions, but only at an extended interstimulus interval (ISI). Categorical coding was also found in the physical discrimination task. These results suggest that relative orientation is coded categorically for both object recognition and physical discrimination, although metric information appears to be coded as well, especially at brief ISIs.  相似文献   

16.
段海军  连灵 《心理科学》2012,35(1):76-81
物体识别的两大理论一直存在争议。以物体为中心理论认为不管物体出现在什么位置,识别均与空间位置无关,而以观察者为中心理论认为识别与空间位置有关。研究参照物体识别的“小几何体”思想自制实验材料,采用启动范式下的分类任务,通过操纵物体自身的结构信息和相对的结构信息,考察了三维物体识别的影响机制。结果发现:(1)物体自身组成部分之间的分离水平和物体之间的相对空间位置对物体识别的影响均呈层级式。支持以观察者为中心理论的整体表征观;(2)不分离水平和相同位置上,整体启动快于部分启动;全分离水平和远距离位置上,部分启动快于整体启动。支持以物体为中心理论的小几何体优先加工观。实现两大理论的融合需要进一步厘清“What + Where”两通路联合表征的二级子层级。  相似文献   

17.
The structure of pigeon multiple-class same-different learning   总被引:1,自引:0,他引:1       下载免费PDF全文
Three experiments examined the structure of the decision framework used by pigeons in learning a multiple-class same-different task. Using a same-different choice task requiring the discrimination of odd-item different displays (one or more of the display's component elements differed) from same displays (all display components identical), pigeons were concurrently trained with sets of four discriminable display types. In each experiment, the consistent group was tested such that the same and different displays of four display types were consistently mapped onto their choice alternatives. The inconsistent group received a conflicting mapping of the same and different displays and the choice alternatives that differed across the four display types but were consistent within a display type. Experiment 1 tested experienced pigeons, and Experiment 2 tested naive pigeons. In both experiments, the consistent group learned their discrimination faster and to a higher level of choice accuracy than did the inconsistent group, which performed poorly in general. Only in the consistent group was the discrimination transferred to novel stimuli, indicative of concept formation in that group. A third experiment documented that the different display classes were discriminable from one another. These results suggest that pigeons attempt to generate a single discriminative rule when learning this type of task, and that this general rule can cover a large variety of stimulus elements and organizations, consistent with previous evidence suggesting that pigeons may be capable of learning relatively unbounded relational same-different concepts.  相似文献   

18.
Two experiments examined whether pigeons discriminate polymorphous categories on the basis of a single highly predictive feature or overall similarity. In the first experiment, pigeons were trained to discriminate between categories of photographs of complex real objects. Within these pictures, single features had been manipulated to produce a highly salient texture cue. Either the picture or the texture provided a reliable cue for discrimination during training, but in probe tests, the picture and texture cues were put into conflict. Some pigeons showed a significant tendency to discriminate on the basis of the picture cue (overall similarity or family resemblance), whereas others appeared to rely on the manipulated texture cue. The second experiment used artificial polymorphous categories in which one dimension of the stimulus provided a completely reliable cue to category membership, whereas three other dimensions provided cues that were individually unreliable but collectively provided a completely reliable basis for discrimination. Most pigeons came under the control of the reliable cue rather than the unreliable cues. A minority, however, came under the control of single dimensions from the unreliable set. We conclude that cue salience can be more important than cue reliability in determining what features will control behavior when multiple cues are available.  相似文献   

19.
Although visual object recognition is primarily shape driven, colour assists the recognition of some objects. It is unclear, however, just how colour information is coded with respect to shape in long-term memory and how the availability of colour in the visual image facilitates object recognition. We examined the role of colour in the recognition of novel, 3-D objects by manipulating the congruency of object colour across the study and test phases, using an old/new shape-identification task. In experiment 1, we found that participants were faster at correctly identifying old objects on the basis of shape information when these objects were presented in their original colour, rather than in a different colour. In experiments 2 and 3, we found that participants were faster at correctly identifying old objects on the basis of shape information when these objects were presented with their original part-colour conjunctions, rather than in different or in reversed part-colour conjunctions. In experiment 4, we found that participants were quite poor at the verbal recall of part-colour conjunctions for correctly identified old objects, presented as grey-scale images at test. In experiment 5, we found that participants were significantly slower at correctly identifying old objects when object colour was incongruent across study and test, than when background colour was incongruent across study and test. The results of these experiments suggest that both shape and colour information are stored as part of the long-term representation of these novel objects. Results are discussed in terms of how colour might be coded with respect to shape in stored object representations.  相似文献   

20.
DiPietro et al (2002 Perception 31 1299-1312) reported a dramatic improvement in pigeons' recognition of partially occluded objects after the birds had been trained to recognize objects that were placed on top of another surface. Here, we investigated whether training with partially erased stimuli or with notched stimuli that had a thin gap between the object and another surface would similarly enhance pigeons' recognition of partially occluded objects. We found that erased training had no effect on the birds' recognition of partially occluded objects. Training pigeons to recognize notched objects improved their performance with the same objects when they were partially occluded; but this improvement did not transfer to novel objects, a result that DiPietro et al reported after on-top training. Together, the present results and those of DiPietro et al implicate prior experience as a key factor in pigeons' recognition of partially occluded objects. Training experiences which improve recognition of partially occluded objects may do so because they improve decomposition of complex two-dimensional scenes by pigeons into separate entities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号