首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
While looking through laterally displacing prisms, subjects pointed sagittally 80 times at an objectively straight-ahead target, completing a reciprocal out-and-back pointing movement ever 1, 3, or 6 s. Visual feedback was available early in the pointing movement or only late at the end of the movement. Aftereffect measures of adaptive shift (obtained after every 10 pointing trials) showed adaptive change only in limb position sense (i.e., proprioceptive adaptation) when movement duration was 1 s, regardless of visual feedback condition; but as movement duration increased, adaptive change in the eye position sense (i.e., visual adaptation) increased while proprioceptive adaptation decreased, especially for the late visual feedback condition. Regardless of visual feedback condition, proprioceptive adaptation showed the maximal rate of growth with the 1-s movement duration, whereas visual adaptation showed maximal growth with the 6-s movement duration. These results provide additional support for a model of adaptive spatial mapping in which the direction of strategically flexible coordination (guidance) between eye and limb (and consequently the locus of adaptive spatial mapping) is jointly determined by movement duration and timing of visual feedback. An additional effect of movement duration is to determine the rate of discordant inputs. Maximal growth of adaptation occurs when the input rate matches the response time of the spatial mapping function.  相似文献   

2.
Three experiments were conducted to determine how variables other than movement time influence the speed of visual feedback utilization in a target-pointing task. In Experiment 1, subjects moved a stylus to a target 20 cm away with movement times of approximately 225 msec. Visual feedback was manipulated by leaving the room lights on over the whole course of the movement or extinguishing the lights upon movement initiation, while prior knowledge about feedback availability was manipulated by blocking or randomizing feedback. Subjects exhibited less radial error in the lights-on/blocked condition than in the other three conditions. In Experiment 2, when subjects were forced to use vision by a laterally displacing prism, it was found that they benefited from the presence of visual feedback regardless of feedback uncertainty even when moving very rapidly (e.g. less than 190 msec). In Experiment 3, subjects pointed with and without a prism over a wide variety of movement times. Subjects benefited from vision much earlier in the prism condition. Subjects seem able to use vision rapidly to modify aiming movements but may do so only when the visual information is predictably available and/or yields an error large enough to detect early enough to correct.  相似文献   

3.
Two experiments investigated the properties of visual persistence as functions of spatial frequency, stimulus duration, and pattern-specific adaptation. In Experiment 1, increasing the duration of high spatial-frequency gratings from 50 to 500 msec decreased the duration of visual persistence produced by that grating to an asymptotic level. However, low-frequency gratings produced a constant estimate of visual persistence independent of presentation time. Also, spatial-frequency specific adaptation reduced the persistence of the high-frequency gratings to this asymptotic level, but the lower frequency persistence estimates already at this level were unaffected (Experiment 2). These findings are related to possible temporal properties of the sustained and transient visual systems.  相似文献   

4.
Continuous versus terminal visual feedback in prism aftereffects   总被引:2,自引:0,他引:2  
  相似文献   

5.
Individual differences in the visual component of prism adaptation   总被引:1,自引:0,他引:1  
The centrality of individual differences in the visual component of perceptual adaptation was examined in a massed-practice-terminal-exposure, prism-viewing paradigm. With positive (adaptive) adjustments in the judgment of the visual straight-ahead, target-pointing aftereffects were found to be equivalent to the sum of the visual and proprioceptive (head-arm) aftereffects. For subjects showing negative visual adjustments to prism exposure, the target-pointing aftereffect was not significantly different from the change in proprioception alone. Implications of these findings for hypotheses concerning the process of perceptual adaptation are discussed.  相似文献   

6.
7.
Visually perceived eye level (VPEL) and the ability of subjects to reach with an unseen limb to targets placed at VPEL were measured in a statically pitched visual surround (pitchroom). VPEL was shifted upward and downward by upward and downward room pitch, respectively. Accuracy in reaching to VPEL represented a compromise between VPEL and actual eye level. This indicates that VPEL shifts reflect in part a change in perceived location of objects. When subjects were provided with terminal visual feedback about their reaching, accuracy improved rapidly. Subsequent reaching, with the room vertical, revealed a negative aftereffect (i.e., reaching errors that were opposite those made initially in the pitched room). In a second study, pointing accuracy was assessed for targets located both at VPEL and at other positions. Errors were similar for targets whether located at VPEL or elsewhere. Additionally, pointing responses were restricted to a narrower range than that of the actual target locations. The small size of reaching and pointing errors in both studies suggests that factors other than a change in perceived location are also involved in VPEL shifts.  相似文献   

8.
The phenomena of prismatically induced “visual capture” and adaptation of the hand were compared. In Experiment 1, it was demonstrated that when the subject’s hand was transported for him by the experimenter (passive movement) immediately preceding the measure of visual capture, the magnitude of the immediate shift in felt limb position (visual capture) was enhanced relative to when the subject moved the hand himself (active movement). In Experiment 2, where the dependent measure was adaptation of the prism-exposed hand, the opposite effect was produced by the active/passive manipulation. It appears, then, that different processes operate to produce visual capture and adaptation. It was speculated that visual capture represents an immediate weighting of visual over proprioceptive input as a result of the greater precision of vision and/or the subject’s tendency to direct his attention more heavily to this modality. In contrast, prism adaptation is probably a recalibration of felt limb position in the direction of vision, induced by the presence of a registered discordance between visual and proprioceptive inputs.  相似文献   

9.
Terminal target-pointing error on the 1st trial of exposure to optical displacement is usually less than is expected from the optical displacement magnitude. The authors confirmed 1st-trial adaptation in the task of pointing toward optically displaced targets while visual feedback was delayed until movement completion. Measurement of head-shoulder posture while participants (N = 24) viewed the optically displaced field revealed that their shoulders felt turned in the direction opposite to the displacement (visual capture), accounting for all but about 4% to 10% of 1st-trial adaptation. First-trial adaptation was unrelated to realignment aftereffects. First-trial adaptation is largely an artifact of the asymmetry of the structured visual field produced by optical displacement, which induces a felt body rotation, thereby reducing the effective optical displacement.  相似文献   

10.
11.
The purpose of this study was to investigate what types of visual cues may contribute to improving movement accuracy in a pointing task, and to determine in what kind of control processes these cues are involved. During the experiment, subjects had to point their finger at visual targets as accurately as possible making rapid movements. Subjects were required to perform a movement with an amplitude of 40 cm within a series of times ranging from 110 to 270 msec. Five visual feedback conditions were applied: no feedback (NF), dynamic ongoing feedback on the complete hand trajectory (CF), static error feedback on the movement end-point (EF), and two partial feedback conditions in which dynamic feedback was available from either the initial (IF) or the terminal (TF) part of the trajectory. The results showed that under the NF and IF conditions accuracy was lowest; constant error was not speed-dependent, whereas dispersion increased with movement speed. Accuracy was highest under the CF and TF conditions and was speed-dependent, as shown by both constant error and dispersion. Under the EF condition, the accuracy level was intermediate, and was also speed-dependent. The time course of performance during the series was analyzed by comparing the mean error of the first and the last five-trial blocks in the series under the three feedback conditions resulting in accuracy improvement and speed-dependence (CF, TF and EF). The block effect was significant overall, with the last block showing greatest accuracy. The block effect was found to be significant for rapid movements only under the CF and TF conditions (with a Block × Speed interaction under the CF condition), and for all movement speeds under the EF condition. But the feedback and speed effects turned out to be significant for each block. The results are discussed in terms of the interchange between ‘corrected’ ongoing responses vs ‘amended’ delayed responses within the motor regulatory processes, the preponderance of one or the other type of response being dependent on feedback availability and movement speed.  相似文献   

12.
Attention and prism adaptation   总被引:4,自引:0,他引:4  
  相似文献   

13.
14.
We examined the effects of egocentric and contextual references on a 3-D exocentric pointing task. Large systematic deviations were found for the slant (angle in the horizontal plane). For most observers, the deviations were smaller when the veridical pointing direction was parallel to a wall. For some observers the size of the deviations was also dependent on whether the veridical pointing direction was frontoparallel or not. For the tilt (angle in the vertical plane), the deviations were smaller and less systematic. Hence, although observers show comparable systematic deviations, the way in which the presence of structure in an environment is used for judging positions of objects is observer-dependent.  相似文献   

15.
16.
Prism exposure produces 2 kinds of adaptive response. Recalibration is ordinary strategic remapping of spatially coded movement commands to rapidly reduce performance error. Realignment is the extraordinary process of transforming spatial maps to bring the origins of coordinate systems into correspondence. Realignment occurs when spatial discordance signals noncorrespondence between spatial maps. In Experiment 1, generalization of recalibration aftereffects from prism exposure to postexposure depended upon the similarity of target pointing limb postures. Realignment aftereffects generalized to the spatial maps involved in exposure. In Experiment 2, the 2 kinds of aftereffects were measured for 3 test positions, one of which was the exposure training position. Recalibration aftereffects generalized nonlinearly, while realignment aftereffects generalized linearly, replicating Bedford (1989, 1993a) using a more familiar prism adaptation paradigm. Recalibration and realignment require methods for distinguishing their relative contribution to prism adaptation.  相似文献   

17.
18.
Fitts’ law robustly predicts the time required to move rapidly to a target. However, it is unclear whether Fitts’ law holds for visually guided actions under visually restricted conditions. We tested whether Fitts’ law applies under various conditions of visual restriction and compared pointing movements in each condition. Ten healthy participants performed four pointing movement tasks under different visual feedback conditions, including full-vision (FV), no-hand-movement (NM), no-target-location (NT), and no-vision (NV) feedback conditions. The movement times (MTs) for each task exhibited highly linear relationships with the index of difficulty (r2 > .96). These findings suggest that pointing movements follow Fitts’ law even when visual feedback is restricted or absent. However, the MTs and accuracy of pointing movements decreased for difficult tasks involving visual restriction.  相似文献   

19.
20.
Two experiments were used to demonstrate that adaptation to ll-deg prism displacement can be conditioned to the stimuli associated with the goggles in which the prisms are housed. In Experiment 1 it was found that repeated alternation between a series of target-pointing responses while wearing prism goggles and a series of responses without prism goggles led to larger adaptive shift when S was tested with nondisplacing goggles than when tested without goggles. The results of Experiment 2 indicated that the adaptation revealed in the first experiment was primarily proprioceptive, rather than visual. Surprisingly, most Ss reported greater difficulty during the exposure period in overcoming the negative aftereffect than they did the prism-induced error.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号