首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
This paper focuses on two estimators of ability with logistic item response theory models: the Bayesian modal (BM) estimator and the weighted likelihood (WL) estimator. For the BM estimator, Jeffreys’ prior distribution is considered, and the corresponding estimator is referred to as the Jeffreys modal (JM) estimator. It is established that under the three-parameter logistic model, the JM estimator returns larger estimates than the WL estimator. Several implications of this result are outlined.  相似文献   

9.
10.
In this paper we argue that model selection, as commonly practised in psychometrics, violates certain principles of coherence. On the other hand, we show that Bayesian nonparametrics provides a coherent basis for model selection, through the use of a ‘nonparametric’ prior distribution that has a large support on the space of sampling distributions. We illustrate model selection under the Bayesian nonparametric approach, through the analysis of real questionnaire data. Also, we present ways to use the Bayesian nonparametric framework to define very flexible psychometric models, through the specification of a nonparametric prior distribution that supports all distribution functions for the inverse link, including the standard logistic distribution functions. The Bayesian nonparametric approach provides a coherent method for model selection that can be applied to any statistical model, including psychometric models. Moreover, under a ‘non‐informative’ choice of nonparametric prior, the Bayesian nonparametric approach is easy to apply, and selects the model that maximizes the log likelihood. Thus, under this choice of prior, the approach can be extended to non‐Bayesian settings where the parameters of the competing models are estimated by likelihood maximization, and it can be used with any psychometric software package that routinely reports the model log likelihood.  相似文献   

11.
When we try to identify causal relationships, how strong do we expect that relationship to be? Bayesian models of causal induction rely on assumptions regarding people’s a priori beliefs about causal systems, with recent research focusing on people’s expectations about the strength of causes. These expectations are expressed in terms of prior probability distributions. While proposals about the form of such prior distributions have been made previously, many different distributions are possible, making it difficult to test such proposals exhaustively. In Experiment 1 we used iterated learning—a method in which participants make inferences about data generated based on their own responses in previous trials—to estimate participants’ prior beliefs about the strengths of causes. This method produced estimated prior distributions that were quite different from those previously proposed in the literature. Experiment 2 collected a large set of human judgments on the strength of causal relationships to be used as a benchmark for evaluating different models, using stimuli that cover a wider and more systematic set of contingencies than previous research. Using these judgments, we evaluated the predictions of various Bayesian models. The Bayesian model with priors estimated via iterated learning compared favorably against the others. Experiment 3 estimated participants’ prior beliefs concerning different causal systems, revealing key similarities in their expectations across diverse scenarios.  相似文献   

12.
Formal models in psychology are used to make theoretical ideas precise and allow them to be evaluated quantitatively against data. We focus on one important??but under-used and incorrectly maligned??method for building theoretical assumptions into formal models, offered by the Bayesian statistical approach. This method involves capturing theoretical assumptions about the psychological variables in models by placing informative prior distributions on the parameters representing those variables. We demonstrate this approach of casting basic theoretical assumptions in an informative prior by considering a case study that involves the generalized context model (GCM) of category learning. We capture existing theorizing about the optimal allocation of attention in an informative prior distribution to yield a model that is higher in psychological content and lower in complexity than the standard implementation. We also highlight that formalizing psychological theory within an informative prior distribution allows standard Bayesian model selection methods to be applied without concerns about the sensitivity of results to the prior. We then use Bayesian model selection to test the theoretical assumptions about optimal allocation formalized in the prior. We argue that the general approach of using psychological theory to guide the specification of informative prior distributions is widely applicable and should be routinely used in psychological modeling.  相似文献   

13.
This article examines a Bayesian nonparametric approach to model selection and model testing, which is based on concepts from Bayesian decision theory and information theory. The approach can be used to evaluate the predictive-utility of any model that is either probabilistic or deterministic, with that model analyzed under either the Bayesian or classical-frequentist approach to statistical inference. Conditional on an observed set of data, generated from some unknown true sampling density, the approach identifies the “best” model as the one that predicts a sampling density that explains the most information about the true density. Furthermore, in the approach, the decision is to reject a model when it does not explain enough information about the true density (according to a straightforward calibration of the Kullback-Leibler divergence measure). The posterior estimate of the true density is based on a Bayesian nonparametric prior that can give positive support to the entire space of sampling densities (defined on some sample space). This article also discusses the theoretical and practical advantages of the Bayesian nonparametric approach over all other types of model selection procedures, and over any model testing procedure that depends on interpreting a p-value. Finally, the Bayesian nonparametric approach is illustrated on four real data sets, in the comparison and testing of order-constrained models, cognitive models, models of choice-behavior, and a test of a general psychometric model.  相似文献   

14.
We analyze the effects of prior gain and loss experiences on individuals’ behavior in two coordination games: battle of the sexes and simultaneous market entry. We propose subjectively transformed games that integrate elements of prospect theory, aggregation of prior and subsequent payoffs, and social projection. Mathematical predictions of behavior are derived based on equilibrium selection concepts. Males’ behavior in our experimental studies is largely consistent with our predictions. However, the behavior of many female respondents appears to be rather consistent with interpreting the initial random lottery outcomes used to manipulate prior experiences as a signal for the players’ abilities to compete. This could be related to females’ known uneasiness of competing against counterparts that might be male and thus, a generally higher salience of rivalry in our incentivized experiments. Females also chose to play far more mixed strategies than males indicating some uncertainty about what type of behavior is appropriate.  相似文献   

15.
16.
We begin by describing some of the mathematical foundations of the geographic profiling problem. We then present a new mathematical framework for the geographic profiling problem based on Bayesian statistical methods that makes explicit connections between assumptions on offender behaviour and the components of the mathematical model. It also can take into account local geographic features that either influence the selection of a crime site or influence the selection of an offender's anchor point. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Abstract

The Bayesian information criterion (BIC) has been used sometimes in SEM, even adopting a frequentist approach. Using simple mediation and moderation models as examples, we form posterior probability distribution via using BIC, which we call the BIC posterior, to assess model selection uncertainty of a finite number of models. This is simple but rarely used. The posterior probability distribution can be used to form a credibility set of models and to incorporate prior probabilities for model comparisons and selections. This was validated by a large scale simulation and results showed that the approximation via the BIC posterior is very good except when both the sample sizes and magnitude of parameters are small. We applied the BIC posterior to a real data set, and it has the advantages of flexibility in incorporating prior, addressing overfitting problems, and giving a full picture of posterior distribution to assess model selection uncertainty.  相似文献   

18.
Humans are adept at inferring the mental states underlying other agents’ actions, such as goals, beliefs, desires, emotions and other thoughts. We propose a computational framework based on Bayesian inverse planning for modeling human action understanding. The framework represents an intuitive theory of intentional agents’ behavior based on the principle of rationality: the expectation that agents will plan approximately rationally to achieve their goals, given their beliefs about the world. The mental states that caused an agent’s behavior are inferred by inverting this model of rational planning using Bayesian inference, integrating the likelihood of the observed actions with the prior over mental states. This approach formalizes in precise probabilistic terms the essence of previous qualitative approaches to action understanding based on an “intentional stance” [Dennett, D. C. (1987). The intentional stance. Cambridge, MA: MIT Press] or a “teleological stance” [Gergely, G., Nádasdy, Z., Csibra, G., & Biró, S. (1995). Taking the intentional stance at 12 months of age. Cognition, 56, 165-193]. In three psychophysical experiments using animated stimuli of agents moving in simple mazes, we assess how well different inverse planning models based on different goal priors can predict human goal inferences. The results provide quantitative evidence for an approximately rational inference mechanism in human goal inference within our simplified stimulus paradigm, and for the flexible nature of goal representations that human observers can adopt. We discuss the implications of our experimental results for human action understanding in real-world contexts, and suggest how our framework might be extended to capture other kinds of mental state inferences, such as inferences about beliefs, or inferring whether an entity is an intentional agent.  相似文献   

19.
Choice reaction times (RTs) are often used as a proxy measure of typicality in semantic categorization studies. However, other item properties have been linked to choice RTs as well. We apply a tailored process model of choice RT to a speeded semantic categorization task in order to deconfound different sources of variability in RT. Our model is based on a diffusion model of choice RT, extended to include crossed random effects (of items and participants). This model retains the interesting process interpretation of the diffusion model’s parameters, but it can be applied to choice RTs even in the case where there are few or no repeated measurements of each participant-item combination. Different aspects of the response process are then linked to different types of item properties. A typicality measure turns out to predict the rate of information uptake, while a lexicographic measure predicts the stimulus encoding time. Accessibility measures cannot reliably predict any component of the decision process.  相似文献   

20.
Dawson C  Gerken L 《Cognition》2011,120(3):350-359
While many constraints on learning must be relatively experience-independent, past experience provides a rich source of guidance for subsequent learning. Discovering structure in some domain can inform a learner’s future hypotheses about that domain. If a general property accounts for particular sub-patterns, a rational learner should not stipulate separate explanations for each detail without additional evidence, as the general structure has “explained away” the original evidence. In a grammar-learning experiment using tone sequences, manipulating learners’ prior exposure to a tone environment affects their sensitivity to the grammar-defining feature, in this case consecutive repeated tones. Grammar-learning performance is worse if context melodies are “smooth” — when small intervals occur more than large ones — as Smoothness is a general property accounting for a high rate of repetition. We present an idealized Bayesian model as a “best case” benchmark for learning repetition grammars. When context melodies are Smooth, the model places greater weight on the small-interval constraint, and does not learn the repetition rule as well as when context melodies are not Smooth, paralleling the human learners. These findings support an account of abstract grammar-induction in which learners rationally assess the statistical evidence for underlying structure based on a generative model of the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号