首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Observers who lie supine with their heads inverted report large (up to 60°) tilt of a light line in an otherwise dark room when their heads and/or bodies are tilted. Most observers report that visual subjective vertical is tilted in the direction opposite to the head/body tilt. The results can be interpreted by employing a model developed by Mittelstaedt (1983), which suggests that visual subjective vertical is derived from a gravity vector transduced by vestibular and somesthetic receptors combined with “idiotropic vectors” that represent the orientation of the observer’s own head and body axes.  相似文献   

2.
The memory for the vanishing location of a horizontally moving target is usually displaced forward in the direction of motion (representational momentum) and downward in the direction of gravity (representational gravity). Moreover, this downward displacement has been shown to increase with time (representational trajectory). However, the degree to which different kinematic events change the temporal profile of these displacements remains to be determined. The present article attempts to fill this gap. In the first experiment, we replicate the finding that representational momentum for downward-moving targets is bigger than for upward motions, showing, moreover, that it increases rapidly during the first 300 ms, stabilizing afterward. This temporal profile, but not the increased error for descending targets, is shown to be disrupted when eye movements are not allowed. In the second experiment, we show that the downward drift with time emerges even for static targets. Finally, in the third experiment, we report an increased error for upward-moving targets, as compared with downward movements, when the display is compatible with a downward ego-motion by including vection cues. Thus, the errors in the direction of gravity are compatible with the perceived event and do not merely reflect a retinotopic bias. Overall, these results provide further evidence for an internal model of gravity in the visual representational system.  相似文献   

3.
Research has shown that spatial memory for moving targets is often biased in the direction of implied momentum and implied gravity, suggesting that representations of the subjective experiences of these physical principles contribute to such biases. The present study examined the association between these spatial memory biases. Observers viewed targets that moved horizontally from left to right before disappearing or viewed briefly shown stationary targets. After a target disappeared, observers indicated the vanishing position of the target. Principal components analysis revealed that biases along the horizontal axis of motion loaded on separate components from biases along the vertical axis orthogonal to motion. The findings support the hypothesis that implied momentum and implied gravity biases have unique influences on spatial memory.  相似文献   

4.
An observer's memory for the final position of a moving stimulus is shifted forward in the direction of its motion. Observers in an upright posture typically show a larger forward memory displacement for a physically downward motion than for a physically upward motion of a stimulus (representational gravity; Hubbard & Bharucha, 1988). We examined whether representational gravity occurred along the environmentally vertical axis or the egocentrically vertical axis. In Experiment 1 observers in either upright or prone postures viewed egocentrically upward and downward motions of a stimulus. Egocentrically downward effects were observed only in the upright posture. In Experiment 2 observers in either upright or prone postures viewed approaching and receding motions of a stimulus along the line of sight. Only in the prone posture did the receding motion produce a larger forward memory displacement than the approaching motion. These results indicate that representational gravity depends not on the egocentric axis but on the environmental axis.  相似文献   

5.
Memory for the final position of a moving target is often shifted or displaced from the true final position of that target. Early studies of this memory shift focused on parallels between the momentum of the target and the momentum of the representation of the target and called this displacementrepresentational momentum, but many factors other than momentum contribute to the memory shift. A consideration of the empirical literature on representational momentum and related types of displacement suggests there are at least four different types of factors influencing the direction and magnitude of such memory shifts: stimulus characteristics (e.g., target direction, target velocity), implied dynamics and environmental invariants (e.g., implied momentum, gravity, friction, centripetal force), memory averaging of target and nontarget context (e.g., biases toward previous target locations or nontarget context), and observers’ expectations (both tacit and conscious) regarding future target motion and target/context interactions. Several theories purporting to account for representational momentum and related types of displacement are also considered.  相似文献   

6.
Observers viewed a moving target, and after the target vanished, indicated either the initial position or the final position of the target. In Experiment 1, an auditory tone cued observers to indicate either the initial position or the final position; in Experiment 2, different groups of observers indicated the initial position or the final position. Judgments of the initial position were displaced backward in the direction opposite to motion, and judgments of the final position were displaced forward in the direction of motion. The data suggest that the remembered trajectory is longer than the actual trajectory, and the displacement pattern is not consistent with the hypothesis that representational momentum results from a distortion of memory for the location of a trajectory.  相似文献   

7.
When observers are asked to localize the onset or the offset position of a moving target, they typically make localization errors in the direction of movement. Similarly, when observers judge a moving target that is presented in alignment with a flash, the target appears to lead the flash. These errors are known as the Fröhlich effect, representational momentum, and flash-lag effect, respectively. This study compared the size of the three mislocalization errors. In Experiment 1, a flash appeared either simultaneously with the onset, the mid-position, or the offset of the moving target. Observers then judged the position where the moving target was located when the flash appeared. Experiments 2 and 3 are exclusively concerned with localizing the onset and the offset of the moving target. When observers localized the position with respect to the point in time when the flash was presented, a clear mislocalization in the direction of movement was observed at the initial position and the mid-position. In contrast, a mislocalization opposite to movement direction occurred at the final position. When observers were asked to ignore the flash (or when no flash was presented at all), a reduced error (or no error) was observed at the initial position and only a minor error in the direction of the movement occurred at the final position. An integrative model is proposed, which suggests a common underlying mechanism, but emphasizes the specific processing components of the Fröhlich effect, flash-lag effect, and representational momentum.  相似文献   

8.
Observers tend to localize the final position of a suddenly vanished moving target farther along in the direction of the target motion (representational momentum). We report here that such localization errors are mediated by perceived motion rather than by retinal motion. By manipulating the cast shadow of a moving target, we induced illusory motion to a target stimulus while keeping the retinal motion constant. Participants indicated the vanishing point of the target by directing a mouse cursor. The resulting magnitude of localization errors was modulated on the basis of the induced direction of the target. Such systematic localization biases were not obtained in a control condition in which the motion paths of the ball and shadow were switched. Our results suggest that cues to object motion trajectory, such as cast shadows, are used for the localization task, supporting a view that a predictive mechanism is responsible for the production of localization errors.  相似文献   

9.
Vectors are mathematical representations of distance and direction information that take the form of line segments where length represents distance and orientation in space represents direction. Vector-based models have proven beneficial in understanding the spatial behavior of a variety of species in tasks that require landmark-based navigation via vector addition and vector averaging to determine a location. Extant research regarding vector-based representational and computational accounts of landmark-based navigation has involved tasks that required solving for one unknown (i.e., a location). Using a novel landmark-based navigation task, we provide evidence consistent with a form of vector algebra that involves solving two simultaneous equations with two unknowns in order to determine a location in space. Results extend vector-based accounts of landmark-based navigation and provide a novel methodological approach to the testing of mobile organisms.  相似文献   

10.
When observers are asked to localize the final position of a moving target, a forward shift of the judged final position is observed. So far, the forward shift has been attributed to the influence of mental continuation of the final target position (representational momentum). However, studies investigating forward displacement have used highly predictable target motion. The direction of target motion and the final target position were often varied between subjects. Thus, observers may have expected the target to travel in a particular direction or vanish at a particular location before a given trial started. In this study, direction of motion and final position were treated as fixed or random factors. The forward shift and the reversal of the shift with time (memory averaging) were absent when both factors were randomized. Thus, the forward shift with implied motion is restricted to repeatedly observed motion sequences that allow for pre-trial motion prediction.  相似文献   

11.
When observers localize the vanishing point of a moving target, localizations are reliably displaced beyond the final position, in the direction the stimulus was travelling just prior to its offset. We examined modulations of this phenomenon through eye movements and action control over the vanishing point. In Experiment 1 with pursuit eye movements, localization errors were in movement direction, but less pronounced when the vanishing point was self‐determined by a key press of the observer. In contrast, in Experiment 2 with fixation instruction, localization errors were opposite movement direction and independent from action control. This pattern of results points at the role of eye movements, which were gathered in Experiment 3. That experiment showed that the eyes lagged behind the target at the point in time, when it vanished from the screen, but that the eyes continued to drift on the targets' virtual trajectory. It is suggested that the perceived target position resulted from the spatial lag of the eyes and of the persisting retinal image during the drift.  相似文献   

12.
董蕊 《心理科学》2015,(3):569-573
通过3个实验探索速度知识和表征动量的关系。3个实验均使用2(速度知识:快、慢)×2(运动方向:左、右)的两因素实验设计,采用诱导运动范式,因变量为偏移加权均数。实验1使用汽车和自行车作为刺激材料,发现两者的前移量无差异;实验2使用人奔跑和站立姿势作为刺激材料,发现奔跑的前移量大于站立的前移量;实验3是控制实验,发现实验2的结果不是由水平视角差异造成的。结论:在有效启动速度概念的情况下,速度知识可以影响表征动量,但其影响可能相对微弱。  相似文献   

13.
The present study focused on the development of a procedure to assess perceived self-motion induced by visual surround motion—vection. Using an apparatus that permitted independent control of visual and inertial stimuli, prone observers were translated along their headx-axis (fore/aft). The observers’ task was to report the direction of self-motion during passive forward and backward translations of their bodies coupled with exposure to various visual surround conditions. The proportion of “forward” responses was used to calculate each observer’s point of subjective equality (PSE) for each surround condition. The results showed that the moving visual stimulus produced a significant shift in the PSE when data from the moving surround condition were compared with the stationary surround and no-vision condition. Further, the results indicated that vection increased monotonically with surround velocities between 4 and 40°/sec. It was concluded that linear vection can be measured in terms of changes in the amplitude of whole-body inertial acceleration required to elicit equivalent numbers of “forward” and “backward” self-motion reports.  相似文献   

14.
The judged vanishing point of a target undergoing apparent motion in a horizontal, vertical, or oblique direction was examined. In Experiment 1, subjects indicated the vanishing point by positioning a crosshair. Judged vanishing point was displaced forward in the direction of motion, with the magnitude of displacement being largest for horizontal motion, intermediate for oblique motion, and smallest for vertical motion. In addition, the magnitude of displacement increased with faster apparent velocities. In Experiment 2, subjects judged whether a stationary probe presented after the moving target vanished was at the same location where the moving target vanished. Probes were located along the axis of motion, and probes located beyond the vanishing point evidenced a higher probability of a same response than did probes behind the vanishing point. In Experiment 3, subjects judged whether a stationary probe presented after the moving target vanished was located on a straight-line extension of the path of motion of the moving target. Probes below the path of motion evidenced a higher probability of a same response than did probes above the path of motion for horizontal and ascending oblique motion; probes above the path of motion evidenced a higher probability for a same response than did probes below the path of motion for descending oblique motion. Overall, the pattern of results suggests that the magnitude of displacement increases as proximity to a horizontal axis increases, and that in some conditions there may be a component analogous to a gravitational influence incorporated into the mental representation.  相似文献   

15.
模拟客体起飞和降落运动,探讨飞行场景中不同运动位置、不同意义客体和运动方向下个体运动空间定向判断能力。结果表明:(1)对降落运动轨迹的判断正确率显著低于起飞运动;(2)无意义客体偏高轨迹的判断正确率显著小于偏低轨迹,表现出方向偏差;(3)飞行场景影响方向偏差的表现形式,当飞机降落运动时,易将偏低路径判断为与预设轨迹相同,而飞机起飞运动时,易将偏高路径判断为相同,表明降落时飞机被知觉为会向斜下方越飞越低,而起飞时飞机会向斜上方越飞越高,表现出飞行惯性。结论:运动空间定向判断受到重力表征及个体知识经验等共同影响,具有认知可渗透性。  相似文献   

16.
模拟客体起飞和降落运动,探讨飞行场景中不同运动位置、不同意义客体和运动方向下个体运动空间定向判断能力。结果表明:(1)对降落运动轨迹的判断正确率显著低于起飞运动;(2)无意义客体偏高轨迹的判断正确率显著小于偏低轨迹,表现出方向偏差;(3)飞行场景影响方向偏差的表现形式,当飞机降落运动时,易将偏低路径判断为与预设轨迹相同,而飞机起飞运动时,易将偏高路径判断为相同,表明降落时飞机被知觉为会向斜下方越飞越低,而起飞时飞机会向斜上方越飞越高,表现出飞行惯性。结论:运动空间定向判断受到重力表征及个体知识经验等共同影响,具有认知可渗透性。  相似文献   

17.
The influence of a moving target on memory for the location of a briefly presented stationary object was examined. When the stationary object was aligned with the final portion of the moving target's trajectory, memory for the location of the stationary object was displaced forward (i.e., in the direction of motion of the moving target); the magnitude of forward displacement increased with increases in the velocity of the moving target, decreased with increases in the distance of the stationary object from the final location of the moving target, and increased and then decreased with increases in retention interval. It is suggested that forward displacement in memory for a stationary object aligned with the final portion of a moving target's trajectory reflects an influence of representational momentum of the moving target on memory for the location of the stationary object. Implications of the data for theories of representational momentum and motion induced mislocalization are discussed.  相似文献   

18.
Localization of moving sound   总被引:3,自引:0,他引:3  
The final position of a moving sound source usually appears to be displaced in the direction of motion. We tested the hypothesis that this phenomenon, termed auditory representational momentum, is already emerging during, not merely after, the period of motion. For this purpose, we investigated the localization of a moving sound at different points in time. In a dark anechoic environment, an acoustic target moved along the frontal horizontal plane. In the initial, middle, or final phase of the motion trajectory, subjects received a tactile stimulus and determined the current position of the moving target at the moment of the stimulus by performing either relative-judgment or pointing tasks. Generally, in the initial phase of the auditory motion, the position was perceived to be displaced in the direction of motion, but this forward displacement disappeared in the further course of the motion. When the motion stimulus had ceased, however, its final position was again shifted in the direction of motion. The latter result suggests that representational momentum in spatial hearing is a phenomenon specific to the final point of motion. Mental extrapolation of past trajectory information is discussed as a potential source of this perceptual displacement.  相似文献   

19.
The final position of a moving sound source usually appears to be displaced in the direction of motion. We tested the hypothesis that this phenomenon, termed auditory representational momentum, is already emerging during, not merely after, the period of motion. For this purpose, we investigated the localization of a moving sound at different points in time. In a dark anechoic environment, an acoustic target moved along the frontal horizontal plane. In the initial, middle, or final phase of the motion trajectory, subjects received a tactile stimulus and determined the current position of the moving target at the moment of the stimulus by performing either relative-judgment or pointing tasks. Generally, in the initial phase of the auditory motion, the position was perceived to be displaced in the direction of motion, but this forward displacement disappeared in the further course of the motion. When the motion stimulus had ceased, however, its final position was again shifted in the direction of motion. The latter result suggests that representational momentum in spatial hearing is a phenomenon specific to the final point of motion. Mental extrapolation of past trajectory information is discussed as a potential source of this perceptual displacement.  相似文献   

20.
When people manipulate a moving object, such as writing with a pen or driving a car, they experience their actions as intimately related to the object’s motion, that is they perceive control. Here, we tested the hypothesis that observers would feel more control over a moving object if an unrelated task drew attention to a location to which the object subsequently moved. Participants steered an object within a narrow path and discriminated the color of a flash that appeared briefly close to the object. Across two experiments, participants provided higher ratings of perceived control when an object moved over a flash’s location than when an object moved away from a flash’s location. This result suggests that we use the location of spatial attention to determine the perception of control. If an object goes where we are attending, we feel like we made it go there.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号