首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Lyons IM  Beilock SL 《Cognition》2011,121(2):256-261
What predicts human mathematical competence? While detailed models of number representation in the brain have been developed, it remains to be seen exactly how basic number representations link to higher math abilities. We propose that representation of ordinal associations between numerical symbols is one important factor that underpins this link. We show that individual variability in symbolic number-ordering ability strongly predicts performance on complex mental-arithmetic tasks even when controlling for several competing factors, including approximate number acuity. Crucially, symbolic number-ordering ability fully mediates the previously reported relation between approximate number acuity and more complex mathematical skills, suggesting that symbolic number-ordering may be a stepping stone from approximate number representation to mathematical competence. These results are important for understanding how evolution has interacted with culture to generate complex representations of abstract numerical relationships. Moreover, the finding that symbolic number-ordering ability links approximate number acuity and complex math skills carries implications for designing math-education curricula and identifying reliable markers of math performance during schooling.  相似文献   

2.
ABSTRACT

Recent studies have shown that deductive reasoning skills (including transitive and conditional inferences) are related to mathematical abilities. Nevertheless, so far the links between mathematical abilities and these two forms of deductive inference have not been investigated in a single study. It is also unclear whether these inference forms are related to both basic maths skills and mathematical reasoning, and whether these relationships still hold if the effects of fluid intelligence are controlled. We conducted a study with 87 adult participants. The results showed that transitive reasoning skills were related to performance on a number line task, and conditional inferences were related to arithmetic skills. Additionally, both types of deductive inference were related to mathematical reasoning skills, although transitive and conditional reasoning ability were unrelated. Our results also highlighted the important role that ordering abilities play in mathematical reasoning, extending findings regarding the role of ordering abilities in basic maths skills. These results have implications for the theories of mathematical and deductive reasoning, and they could inspire the development of novel educational interventions.  相似文献   

3.
The numerical ratio effect (NRE) and the Weber fraction (w) are common metrics of the precision of the approximate numbers sense (ANS), a cognitive mechanism suggested to play a role in the development of numerical and arithmetic skills. The task most commonly used to measure the precision of the ANS is the numerical comparison task. Multiple variants of this task have been employed yet it is currently unclear how these affect metrics of ANS acuity, and how these relate to arithmetic achievement. The present study investigates the reliability, validity and relationship to standardized measures of arithmetic fluency of the NRE and w elicited by three variants of the nonsymbolic number comparison task. Results reveal that the strengths of the NRE and w differ between task variants. Moreover, the reliability and validity of the reaction time NRE and the w were generally significant across task variants, although reliability was stronger for w. None of the task variants revealed a correlation between ANS metrics and arithmetic fluency in adults. These results reveal important consistencies across nonsymbolic number comparison tasks, indicating a shared cognitive foundation. However, the relationship between ANS acuity and arithmetic performance remains unclear.  相似文献   

4.
The processing of two-digit numbers in comparison tasks involves the activation and manipulation of magnitude information to decide which number is larger. The present study explored the role of different working memory (WM) components and skills in the processing of two-digit numbers by examining the unit–decade compatibility effect with Arabic digits and number words. In the study, the unit–decade compatibility effect and different WM components were evaluated. The results indicated that the unit–decade compatibility effect was associated to specific WM skills depending on the number format (Arabic digits and number words). We discussed the implications of these results for the decomposed view of two-digit numbers.  相似文献   

5.
We tested whether split effects in arithmetic (i.e., better performance on large-split problems, like 3 + 8 = 16, than on small-split problems, like 3 + 8 = 12) reflect decision processing or strategy selection. To achieve this end, we tested performance of younger and older adults, matched on arithmetic skills, on two arithmetic tasks: the addition/number comparison task (e.g., 4 + 8, 13; which item is the larger?) and in the inequality verification task (e.g., 4 + 8 < 13; Yes/No?). In both tasks, split between additions and proposed numbers were manipulated. We also manipulated the difficulty of the additions, which represents an index of arithmetic fact calculation (i.e., hard problems, like 6 + 8 < 15, are solved more slowly than easy problems, like 2 + 4 < 07, suggesting that calculation takes longer). Analyses of latencies revealed three main results: First, split effects were of smaller magnitude in older adults compared to younger adults, whatever the type of arithmetic task; second, split effects were of smaller magnitude on easy problems; and third, calculation processes were well maintained in older adults with high level of arithmetic skills. This set of results improves our understanding of cognitive aging and strategy selection in arithmetic.  相似文献   

6.
A nonverbal primitive number sense allows approximate estimation and mental manipulations on numerical quantities without the use of numerical symbols. In a recent randomized controlled intervention study in adults, we demonstrated that repeated training on a non-symbolic approximate arithmetic task resulted in improved exact symbolic arithmetic performance, suggesting a causal relationship between the primitive number sense and arithmetic competence. Here, we investigate the potential mechanisms underlying this causal relationship. We constructed multiple training conditions designed to isolate distinct cognitive components of the approximate arithmetic task. We then assessed the effectiveness of these training conditions in improving exact symbolic arithmetic in adults. We found that training on approximate arithmetic, but not on numerical comparison, numerical matching, or visuo-spatial short-term memory, improves symbolic arithmetic performance. In addition, a second experiment revealed that our approximate arithmetic task does not require verbal encoding of number, ruling out an alternative explanation that participants use exact symbolic strategies during approximate arithmetic training. Based on these results, we propose that nonverbal numerical quantity manipulation is one key factor that drives the link between the primitive number sense and symbolic arithmetic competence. Future work should investigate whether training young children on approximate arithmetic tasks even before they solidify their symbolic number understanding is fruitful for improving readiness for math education.  相似文献   

7.
Recent research reveals a link between individual differences in mathematics achievement and performance on tasks that activate the approximate number system (ANS): a primitive cognitive system shared by diverse animal species and by humans of all ages. Here we used a brief experimental paradigm to test one causal hypothesis suggested by this relationship: activation of the ANS may enhance children’s performance of symbolic arithmetic. Over 2 experiments, children who briefly practiced tasks that engaged primitive approximate numerical quantities performed better on subsequent exact, symbolic arithmetic problems than did children given other tasks involving comparison and manipulation of non-numerical magnitudes (brightness and length). The practice effect appeared specific to mathematics, as no differences between groups were observed on a comparable sentence completion task. These results move beyond correlational research and provide evidence that the exercise of non-symbolic numerical processes can enhance children’s performance of symbolic mathematics.  相似文献   

8.
Many learners have difficulties with rational number tasks because they persistently rely on their natural number knowledge, which is not always applicable. Studies show that such a natural number bias can mislead not only children but also educated adults. It is still unclear whether and under what conditions mathematical expertise enables people to be completely unaffected by such a bias on tasks in which people with less expertise are clearly biased. We compared the performance of eighth‐grade students and expert mathematicians on the same set of algebraic expression problems that addressed the effect of arithmetic operations (multiplication and division). Using accuracy and response time measures, we found clear evidence for a natural number bias in students but no traces of a bias in experts. The data suggested that whereas students based their answers on their intuitions about natural numbers, expert mathematicians relied on their skilled intuitions about algebraic expressions. We conclude that it is possible for experts to be unaffected by the natural number bias on rational number tasks when they use strategies that do not involve natural numbers.  相似文献   

9.
Based on the stability and level of performance on standard achievement tests in first and second grade (mean age in first grade = 82 months), children with IQ scores in the low-average to high-average range were classified as learning disabled (LD) in mathematics (MD), reading (RD), or both (MD/RD). These children (n = 42), a group of children who showed variable achievement test performance across grades (n = 16), and a control group of academically normal peers (n = 35) were administered a series of experimental and psychometric tasks. The tasks assessed number comprehension and production skills, counting knowledge, arithmetic skills, working memory, the ease of activation of phonetic representations of words and numbers, and spatial abilities. The children with variable achievement test performance did not differ from the academically normal children in any cognitive domain, whereas the children in the LD groups showed specific patterns of cognitive deficit, above and beyond the influence of IQ. Discussion focuses on the similarities and differences across the groups of LD children.  相似文献   

10.
近年来,来自认知发展、比较认知、跨文化认知和神经生物学的研究证据都表明近似数量系统的存在,并且相较于一般认知能力,它更可能是决定个体数学能力差异最为重要的因素。本文综述了有关近似数量系统敏锐度与数学能力相互关系的横断研究、纵向研究、训练研究及认知神经科学的研究成果,分析了影响二者关系的因素,包括个体年龄、数学能力高低、抑制控制等,并总结了多种理论对二者间显著正相关关系的解释。未来研究需要在确定更具信效度的测量范式的基础上探讨近似数量系统与数学能力各维度的关系,以及这种相互关系背后的原因,并将研究结论运用于数学教学及计算障碍个体的干预。  相似文献   

11.
In this study, the performance of typically developing 6- to 8-year-old children on an approximate number discrimination task, a symbolic comparison task, and a symbolic and nonsymbolic number line estimation task was examined. For the first time, children’s performances on these basic cognitive number processing tasks were explicitly contrasted to investigate which of them is the best predictor of their future mathematical abilities. Math achievement was measured with a timed arithmetic test and with a general curriculum-based math test to address the additional question of whether the predictive association between the basic numerical abilities and mathematics achievement is dependent on which math test is used. Results revealed that performance on both mathematics achievement tests was best predicted by how well children compared digits. In addition, an association between performance on the symbolic number line estimation task and math achievement scores for the general curriculum-based math test measuring a broader spectrum of skills was found. Together, these results emphasize the importance of learning experiences with symbols for later math abilities.  相似文献   

12.
The present study investigated basic numerical skills and arithmetic in adults with developmental dyslexia. Participants performed exact and approximate calculation, basic numerical tasks (e.g., counting; symbolic number comparison; spatial–numerical association of response codes, SNARC), and visuospatial tasks (mental rotation and visual search tasks). The group with dyslexia showed a marginal impairment in counting compared to age- and IQ-matched controls, and they were impaired in exact addition, in particular with respect to speed. They were also significantly slower in multiplication. In basic number processing, however, there was no significant difference in performance between those with dyslexia and controls. Both groups performed similarly on subtraction and approximate addition tasks. These findings indicate that basic number processing in adults with dyslexia is intact. Their difficulties are restricted to the verbal code and are not associated with deficits in nonverbal magnitude representation, visual Arabic number form, or spatial cognition.  相似文献   

13.
Ordinality is a fundamental feature of numbers and recent studies have highlighted the role that number ordering abilities play in mathematical development (e.g., Lyons et al., 2014 ), as well as mature mathematical performance (e.g., Lyons & Beilock, 2011 ). The current study tested the novel hypothesis that non‐numerical ordering ability, as measured by the ordering of familiar sequences of events, also plays an important role in maths development. Ninety children were tested in their first school year and 87 were followed up at the end of their second school year, to test the hypothesis that ordinal processing, including the ordering of non‐numerical materials, would be related to their maths skills both cross‐sectionally and longitudinally. The results confirmed this hypothesis. Ordinal processing measures were significantly related to maths both cross‐sectionally and longitudinally, and children's non‐numerical ordering ability in their first year of school (as measured by order judgements for everyday events and the parents’ report of their child's everyday ordering ability) was the strongest longitudinal predictor of maths one year later, when compared to several measures that are traditionally considered to be important predictors of early maths development. Children's everyday ordering ability, as reported by parents, also significantly predicted growth in formal maths ability between Year 1 and Year 2, although this was not the case for the event ordering task. The present study provides strong evidence that domain‐general ordering abilities play an important role in the development of children's maths skills at the beginning of formal education.  相似文献   

14.
The processing of two-digit numbers in comparison tasks involves the activation and manipulation of magnitude information to decide which number is larger. The present study explored the role of different working memory (WM) components and skills in the processing of two-digit numbers by examining the unit-decade compatibility effect with Arabic digits and number words. In the study, the unit-decade compatibility effect and different WM components were evaluated. The results indicated that the unit-decade compatibility effect was associated to specific WM skills depending on the number format (Arabic digits and number words). We discussed the implications of these results for the decomposed view of two-digit numbers.  相似文献   

15.
It is widely accepted that different number-related tasks, including solving simple addition and subtraction, may induce attentional shifts on the so-called mental number line, which represents larger numbers on the right and smaller numbers on the left. Recently, it has been shown that different number-related tasks also employ spatial attention shifts along with general cognitive processes. Here we investigated for the first time whether number line estimation and complex mental arithmetic recruit a common mechanism in healthy adults. Participants’ performance in two-digit mental additions and subtractions using visual stimuli was compared with their performance in a mental bisection task using auditory numerical intervals. Results showed significant correlations between participants’ performance in number line bisection and that in two-digit mental arithmetic operations, especially in additions, providing a first proof of a shared cognitive mechanism (or multiple shared cognitive mechanisms) between auditory number bisection and complex mental calculation.  相似文献   

16.
Research on the improvement of elementary school mathematics has shown that computer-based training of number sense (e.g., processing magnitudes or locating numbers on the number line) can lead to substantial achievement gains in arithmetic skills. Recent studies, however, have highlighted that training domain-general cognitive abilities (e.g., working memory [WM]) may also improve mathematical achievement. This study addressed the question of whether a training of domain-specific number sense skills or domain-general WM abilities is more appropriate for improving mathematical abilities in elementary school. Fifty-nine children (Mage = 9 years, 32 girls and 27 boys) received either a computer-based, adaptive training of number sense (n = 20), WM skills (n = 19), or served as a control group (n = 20). The training duration was 20 min per day for 15 days. Before and after training, we measured mathematical ability using a curriculum-based math test, as well as spatial WM. For both training groups, we observed substantial increases in the math posttest compared to the control group (d = .54 for number sense skills training, d = .57 for WM training, respectively). Whereas the number sense group showed significant gains in arithmetical skills, the WM training group exhibited marginally significant gains in word problem solving. However, no training group showed significant posttest gains on the spatial WM task. Results indicate that a short training of either domain-specific or domain-general skills may result in reliable short-term training gains in math performance, although no stable training effects were found in the spatial WM task.  相似文献   

17.
According to Hunt's match hypothesis, the accuracy of parents' beliefs about their children's abilities can influence the nature of the early learning experiences they provide. The present study examined the accuracy of parents' beliefs about their preschoolers' number development and relations to parent‐reported frequency of engaging children in number related experiences at home. Parents reported engaging their preschoolers more frequently in conventional numeracy activities, (i.e. counting and identifying numbers) than advanced number‐related activities (e.g. arithmetic) at home, though the frequency of advanced activities increased with the development of children's advanced number skills. Parents were most uncertain about their children's advanced number skills, though they demonstrated an overall tendency to overestimate their children's abilities across number tasks. Increased rates of overestimation and decreased rates of underestimation were associated with increased incidences of advanced activity engagement at home. Thus, results suggest guiding parents to understand their own children's numerical understanding in a wide range of number domains could promote more advanced at‐home number‐related activity engagement. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
The present study addresses three questions regarding age differences in working memory: (1) whether performance on complex span tasks decreases as a function of age at a faster rate than performance on simple span tasks; (2) whether spatial working memory decreases at a faster rate than verbal working memory; and (3) whether the structure of working memory abilities is different for different age groups. Adults, ages 20-89 (n = 388), performed three simple and three complex verbal span tasks and three simple and three complex spatial memory tasks. Performance on the spatial tasks decreased at faster rates as a function of age than performance on the verbal tasks, but within each domain, performance on complex and simple span tasks decreased at the same rates. Confirmatory factor analyses revealed that domain-differentiated models yielded better fits than models involving domain-general constructs, providing further evidence of the need to distinguish verbal and spatial working memory abilities. Regardless of which domain-differentiated model was examined, and despite the faster rates of decrease in the spatial domain, age group comparisons revealed that the factor structure of working memory abilities was highly similar in younger and older adults and showed no evidence of age-related dedifferentiation.  相似文献   

19.
Semantic understanding of numbers and related concepts can be dissociated from rote knowledge of arithmetic facts. However, distinctions among different kinds of semantic representations related to numbers have not been fully explored. Working with numbers and arithmetic requires representing semantic information that is both analogue (e.g., the approximate magnitude of a number) and symbolic (e.g., what / means). In this article, the authors describe a patient (MC) who exhibits a dissociation between tasks that require symbolic number knowledge (e.g., knowledge of arithmetic symbols including numbers, knowledge of concepts related to numbers such as rounding) and tasks that require an analogue magnitude representation (e.g., comparing size or frequency). MC is impaired on a variety of tasks that require symbolic number knowledge, but her ability to represent and process analogue magnitude information is intact. Her deficit in symbolic number knowledge extends to a variety of concepts related to numbers (e.g., decimal points, Roman numerals, what a quartet is) but not to any other semantic categories that we have tested. These findings suggest that symbolic number knowledge is a functionally independent component of the number processing system, that it is category specific, and that it is anatomically and functionally distinct from magnitude representations.  相似文献   

20.
Digit comparison is strongly related to individual differences in children's arithmetic ability. Why this is the case, however, remains unclear to date. Therefore, we investigated the relative contribution of three possible cognitive mechanisms in first and second graders’ digit comparison performance: digit identification, digit–number word matching and digit ordering ability. Furthermore, we examined whether these components could account for the well‐established relation between digit comparison performance and arithmetic. As expected, all candidate predictors were related to digit comparison in both age groups. Moreover, in first graders, digit ordering and in second graders both digit identification and digit ordering explained unique variance in digit comparison performance. However, when entering these unique predictors of digit comparison into a mediation model with digit comparison as predictor and arithmetic as outcome, we observed that whereas in second graders digit ordering was a full mediator, in first graders this was not the case. For them, the reverse was true and digit comparison fully mediated the relation between digit ordering and arithmetic. These results suggest that between first and second grade, there is a shift in the predictive value for arithmetic from cardinal processing and procedural knowledge to ordinal processing and retrieving declarative knowledge from memory; a process which is possibly due to a change in arithmetic strategies at that age. A video abstract of this article can be viewed at: https://youtu.be/dDB0IGi2Hf8  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号