首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study used coherence and directionality analyses to explore whether the motor cortex contributes to plantar flexor muscle activity during the stance phase and push-off phase during gait. Subjects walked on a treadmill, while EEG over the leg motorcortex area and EMG from the medial gastrocnemius and soleus muscles was recorded. Corticomuscular and intermuscular coherence were calculated from pair-wise recordings. Significant EEG–EMG and EMG–EMG coherence in the beta and gamma frequency bands was found throughout the stance phase with the largest coherence towards push-off. Analysis of directionality revealed that EEG activity preceded EMG activity throughout the stance phase until the time of push-off. These findings suggest that the motor cortex contributes to ankle plantar flexor muscle activity and forward propulsion during gait.  相似文献   

2.
Tone paired with stimulation of the nucleus basalis (NB) induces behavioral memory that is specific to the frequency of the conditioned stimulus (CS), assessed by cardiac and respiration behavior during post-training stimulus generalization testing. This paper focuses on CS-specific spectral and temporal features of conditioned EEG activation. Adult male Sprague-Dawley rats, chronically implanted with a stimulating electrode in the NB and a recording electrode in the ipsilateral auditory cortex, received either tone (6kHz, 70dB, 2s) paired with co-terminating stimulation of the nucleus basalis (0.2s, 100Hz, 80-105 microA, ITI approximately 45s) or unpaired presentation of the stimuli (approximately 200 trials/day for approximately 14 days). CS-specificity was tested 24h post-training by presenting test tones to obtain generalization gradients for the EEG, heart rate, and respiration. Behavioral memory was evident in cardiac and respiratory responses that were maximal to the CS frequency of 6kHz. FFT analyses of tone-elicited changes of power in the delta, theta, alpha, beta1, beta2, and gamma bands in the paired group revealed that conditioned EEG activation (shift from lower to higher frequencies) was differentially spectrally and temporally specific: theta, and alpha to a lesser extent, decreased selectively to 6kHz during and for several seconds following tone presentation while gamma power increased transiently during and after 6kHz. Delta exhibited no CS-specificity and the beta bands showed transient specificity only after several seconds. The unpaired group exhibited neither CS-specific behavioral nor EEG effects. Thus, stimulus generalization tests reveal that conditioned EEG activation is not unitary but rather reflects CS-specificity, with band-selective markers for specific, associative neural processes in learning and memory.  相似文献   

3.
Activation of a default mode network (DMN) including frontal and parietal midline structures varies with cognitive load, being more active during low-load tasks and less active during high-load tasks requiring executive control. Meditation practices entail various degrees of cognitive control. Thus, DMN activation patterns could give insight into the nature of meditation practices. This 10-week random assignment study compared theta2, alpha1, alpha2, beta1, beta2 and gamma EEG coherence, power, and eLORETA cortical sources during eyes-closed rest and Transcendental Meditation (TM) practice in 38 male and female college students, average age 23.7 years. Significant brainwave differences were seen between groups. Compared to eyes-closed rest, TM practice led to higher alpha1 frontal log-power, and lower beta1 and gamma frontal and parietal log-power; higher frontal and parietal alpha1 interhemispheric coherence and higher frontal and frontal-central beta2 intrahemispheric coherence. eLORETA analysis identified sources of alpha1 activity in midline cortical regions that overlapped with the DMN. Greater activation in areas that overlap the DMN during TM practice suggests that meditation practice may lead to a foundational or ‘ground’ state of cerebral functioning that may underlie eyes-closed rest and more focused cognitive processes.  相似文献   

4.
探讨轻度认知功能障碍患者(MCI)工作记忆状态下脑电能量及皮质联络功能的变化特征。被试为从社区选取的35名轻度认知功能障碍患者和34名健康志愿者。采用简单计算回忆方法,结果发现工作记忆加工过程中会引起4.0~18.0Hz范围内功率值的改变,且MCI组高于正常对照组;MCI患者在中央、顶、颞叶的半球间相干系数均显著高于正常对照组。研究结果提示MCI患者可能存在中央、顶、颞叶皮层的功能减退,工作记忆状态下通过代偿机制仍能维持加工的有效性  相似文献   

5.
The study aims to explore the significance of event‐related potentials (ERPs) and event‐related brain oscillations (EROs) (delta, theta, alpha, beta, gamma power) in response to emotional (fear, happiness, sadness) when compared with neutral faces during 180–250 post‐stimulus time interval. The ERP results demonstrated that the emotional face elicited a negative peak at approximately 230 ms (N2). Moreover, EEG measures showed that motivational significance of face (emotional vs. neutral) could modulate the amplitude of EROs, but only for some frequency bands (i.e. theta and gamma bands). In a second phase, we considered the resemblance of the two EEG measures by a regression analysis. It revealed that theta and gamma oscillations mainly effect as oscillation activity at the N2 latency. Finally, a posterior increased power of theta was found for emotional faces.  相似文献   

6.
Detecting mental states in drivers offers an opportunity to reduce accidents by triggering alerts and signaling the need for rest or renewed focus. Here we used electroencephalography (EEG) to measure brain signals in young drivers operating a driving simulator to detect mental states and predict accidents. We measured reaction times to unexpected hazardous events and correlated them with EEG signals measured from the frontal, parietal, and temporal cortices as well as the central sulcus (corresponding to motor cortex). We found that EEG signals in the relative beta (power in beta (13–30 Hz) relative to total power of the EEG (0.5–30 Hz)), alpha/delta, alpha/theta, beta/delta, beta/theta frequency bands were higher for collisions than successful collision avoidance, and that the key decision-making period is the 2nd second before braking. Importantly, a decision tree classifier trained on these neural signals predicted collision avoidance outcomes. Then based on random forest model, we extracted three critical neural signals (beta/delta_frontal, relative beta_parietal and relative beta_central Sulcus) to classify collision avoidance outcomes. Our findings suggest measuring EEG during driving may provide useful signals for enhancing driver safety.  相似文献   

7.
Electroencephalography (EEG) was recorded while the subjects played a video game where the player had to steer a monkey into a goal while collecting bananas for extra points and had to avoid falling off the edge of the game board. Each of these three studied events evoked differential EEG oscillatory changes. Picking up bananas evoked decreased theta activation on central electrodes, decreased high alpha activation on frontal electrodes, and increased beta activation on frontal electrodes. Falling off the game board evoked decreased central theta activation and increased fronto-central beta activation. Reaching the goal evoked increased theta activation on parietal electrodes, increased low alpha activation on frontal electrodes, increased high alpha activation on frontal, central, and parietal electrodes, and increased beta activation on frontal and central electrodes. It is suggested that the EEG oscillations evoked by picking up bananas reflect increased cortical activation and arousal; the oscillations evoked by falling off the edge of the game board reflect motor functions; and the oscillations evoked by reaching the goal reflect a relaxed state. Thus, EEG may turn out to be a valuable tool when examining psychological responses to video game events.  相似文献   

8.
EEG频谱相干分析发现额叶发育在童年中期存在可能的加速期。针对这一问题,本研究通过记录75名6至12岁正常儿童静坐和闭目状态下的自发脑电,分析δ、θ、α和β基本脑电频段下31对电极相干的变化情况,系统探索了该年龄段儿童额叶自发脑电频谱相干的变化特点,结果发现:θ波活动普遍强于α和β波活动;6至12岁儿童额叶内、额叶与其他脑叶间相干在整体上表现为随年龄增长而增加的趋势;额叶内、额叶与其他脑叶间相干在各频段均表现为7岁、11岁突增,10岁、12岁表现为高峰。上述结果支持6至12岁儿童额叶发育存在加速变化的结论。  相似文献   

9.
This study was designed to determine if the K-Complex reflects an arousal from sleep or a sleep protection mechanism. Ten participants were presented auditory stimuli every 20 s while asleep. Trials were sorted according to the presence or absence of a K-Complex. A fast Fourier Transformation of the data was computed on EEG segments prior to and following stimulus onset. The log power of activity in delta, theta, alpha, sigma, and beta bandwidths was computed. When a K-Complex was elicited, there were no differences in EEG activity prior to and following the stimulus. However, during slow wave sleep, when a K-Complex was not elicited, there was a significant overall increase in theta, alpha, sigma, and beta activity following stimulus. These results tend to support the notion that the K-Complex appears to prevent arousal.  相似文献   

10.
Changes in oscillatory brain activity have been related to perceptual and cognitive processes such as selective attention and memory matching. Here we examined brain oscillations, measured with electroencephalography (EEG), during a semantic speech processing task that required both lexically mediated memory matching and selective attention. Participants listened to nouns spoken in male and female voices, and detected an animate target (p = 20%) in a train of inanimate standards or vice versa. For a control task, subjects listened to the same words and detected a target male voice in standards of a female voice or vice versa. The standard trials of the semantic task showed enhanced upper beta (25–30 Hz) and gamma band (GBA, 30–60 Hz) activity compared to the voice task. Upper beta and GBA enhancement was accompanied by a suppression of alpha (8–12 Hz) and lower to mid beta (13–20 Hz) activity mainly localized to posterior electrodes. Enhancement of phase-locked theta activity peaking near 275 ms also occurred over the midline electrodes. Theta, upper beta, and gamma band enhancement may reflect lexically mediated template matching in auditory memory, whereas the alpha and beta suppression likely indicate increased attentional processes and memory demands.  相似文献   

11.
Prior research has shown that the ratio between resting-state theta (4–7 Hz)-beta (13–30 Hz) oscillations in the electroencephalogram (EEG) is associated with reward- and punishment-related feedback learning and risky decision making. However, it remains unclear whether the theta/beta EEG ratio is also an electrophysiological index for poorer behavioral adaptation when reward and punishment contingencies change over time. The aim of the present study was to investigate whether resting-state theta (4–7 Hz)-beta (13–30 Hz) EEG ratio correlated with reversal learning. A 4-min resting-state EEG was recorded and a gambling task with changing reward-punishment contingencies was administered in 128 healthy volunteers. Results showed an inverse relationship between theta/beta EEG ratio and reversal learning. Our findings replicate and extend previous findings by showing that higher midfrontal theta/beta EEG ratios are associated with poorer reversal learning and behavioral adaptive responses under changing environmental demands.  相似文献   

12.
We investigated whether functional brain networks are different in coloured-hearing synaesthetes compared with non-synaesthetes. Based on resting state electroencephalographic (EEG) activity, graph-theoretical analysis was applied to functional connectivity data obtained from different frequency bands (theta, alpha1, alpha2, and beta) of 12 coloured-hearing synaesthetes and 13 non-synaesthetes. The analysis of functional connectivity was based on estimated intra-cerebral sources of brain activation using standardized low-resolution electrical tomography. These intra-cerebral sources of brain activity were subjected to graph-theoretical analysis yielding measures representing small-world network characteristics (cluster coefficients and path length). In addition, brain regions with strong interconnections were identified (so-called hubs), and the interconnectedness of these hubs were quantified using degree as a measure of connectedness. Our analysis was guided by the two-stage model proposed by Hubbard and Ramachandran (2005). In this model, the parietal lobe is thought to play a pivotal role in binding together the synaesthetic perceptions (hyperbinding). In addition, we hypothesized that the auditory cortex and the fusiform gyrus would qualify as strong hubs in synaesthetes. Although synaesthetes and non-synaesthetes demonstrated a similar small-world network topology, the parietal lobe turned out to be a stronger hub in synaesthetes than in non-synaesthetes supporting the two-stage model. The auditory cortex was also identified as a strong hub in these coloured-hearing synaesthetes (for the alpha2 band). Thus, our a priori hypotheses receive strong support. Several additional hubs (for which no a priori hypothesis has been formulated) were found to be different in terms of the degree measure in synaesthetes, with synaesthetes demonstrating stronger degree measures indicating stronger interconnectedness. These hubs were found in brain areas known to be involved in controlling memory processes (alpha1: hippocampus and retrosplenial area), executive functions (alpha1 and alpha2: ventrolateral prefrontal cortex; theta: inferior frontal cortex), and the generation of perceptions (theta: extrastriate cortex; beta: subcentral area). Taken together this graph-theoretical analysis of the resting state EEG supports the two-stage model in demonstrating that the left-sided parietal lobe is a strong hub region, which is stronger functionally interconnected in synaesthetes than in non-synaesthetes. The right-sided auditory cortex is also a strong hub supporting the idea that coloured-hearing synaesthetes demonstrate a specific auditory cortex. A further important point is that these hub regions are even differently operating at rest supporting the idea that these hub characteristics are predetermining factors of coloured-hearing synaesthesia.  相似文献   

13.
The current study examined the relation between infant sustained attention and infant EEG oscillations. Fifty‐nine infants were tested at 6 (= 15), 8 (= 17), 10 (= 14), and 12 (= 13) months. Three attention phases, stimulus orienting, sustained attention, and attention termination, were defined based on infants' heart rate changes. Frequency analysis using simultaneously recorded EEG focused on infant theta (2–6 Hz), alpha (6–9 Hz), and beta (9–14 Hz) rhythms. Cortical source analysis of EEG oscillations was conducted with realistic infant MRI models. Theta synchronization was found over fontal pole, temporal, and parietal electrodes during infant sustained attention for 10 and 12 months. Alpha desynchronization was found over frontal, central and parietal electrodes during sustained attention. This alpha effect started to emerge at 10 months and became well established by 12 months. No difference was found for the beta rhythm between different attention phases. The theta synchronization effect was localized to the orbital frontal, temporal pole, and ventral temporal areas. The alpha desynchronization effect was localized to the brain regions composing the default mode network including the posterior cingulate cortex and precuneus, medial prefrontal cortex, and inferior parietal gyrus. The alpha desynchronization effect was also localized to the pre‐ and post‐central gyri. The present study demonstrates a connection between infant sustained attention and EEG oscillatory activities.  相似文献   

14.
Occipital gamma activation during Vipassana meditation   总被引:1,自引:0,他引:1  
Long-term Vipassana meditators sat in meditation vs. a control rest (mind-wandering) state for 21 min in a counterbalanced design with spontaneous EEG recorded. Meditation state dynamics were measured with spectral decomposition of the last 6 min of the eyes-closed silent meditation compared to control state. Meditation was associated with a decrease in frontal delta (1–4 Hz) power, especially pronounced in those participants not reporting drowsiness during meditation. Relative increase in frontal theta (4–8 Hz) power was observed during meditation, as well as significantly increased parieto-occipital gamma (35–45 Hz) power, but no other state effects were found for the theta (4–8 Hz), alpha (8–12 Hz), or beta (12–25 Hz) bands. Alpha power was sensitive to condition order, and more experienced meditators exhibited no tendency toward enhanced alpha during meditation relative to the control task. All participants tended to exhibit decreased alpha in association with reported drowsiness. Cross-experimental session occipital gamma power was the greatest in meditators with a daily practice of 10+ years, and the meditation-related gamma power increase was similarly the strongest in such advanced practitioners. The findings suggest that long-term Vipassana meditation contributes to increased occipital gamma power related to long-term meditational expertise and enhanced sensory awareness.  相似文献   

15.
Social touch seems to modulate emotions, but its brain correlates are poorly understood. Here, we investigated if frontal power band activity in the electroencephalogram (EEG) during aversive mental imagery is modulated by social touch from one’s romantic partner and a stranger. We observed the highest theta and beta power when imaging alone, next so when being touched by a stranger, with lowest theta and beta activity during holding hands with the loved one. Delta power was higher when being alone than with a stranger or a partner, with no difference between the two. Gamma power was highest during the stranger condition and lower both when being alone and with the partner, while alpha power did not change as a function of social touch. Theta power displayed a positive correlation with electrodermal activity supporting its relation to emotional arousal. Attachment style modulated the effect of touch on the EEG as only secure but not insecure partner bonding was associated with theta power reductions. Because theta power was sensitive to the experimental perturbations, mapped onto peripheral physiological arousal and reflected partner attachment style we suggest that frontal theta power might serve as an EEG derived bio-marker for social touch in emotionally significant dyads.  相似文献   

16.
Previous research from our laboratory has shown that phasic or event-related changes in alpha and theta band power are related to memory performance. In this study, we test the hypothesis, whether tonic or ‘baseline’ power too is related to memory performance. The ongoing EEG was analyzed for a sample of 60 subjects during five experimental conditions: eyes closed, eyes open, memorizing words and counting backward in steps of 3 and 7. The results show that subjects with good memory performance have significantly larger upper alpha, but less theta and lower alpha power. In contrast to memory, good calculation performers have more beta and theta power than bad performers. These findings were obtained during actual task performance, but in a similar way also during the resting conditions eyes closed and open.  相似文献   

17.
High-approach-motivated (pre-goal) positive affect states encourage tenacious goal pursuit and narrow cognitive scope. As such, high approach-motivated states likely enhance the neural correlates of motor-action preparation to aid in goal acquisition. These neural correlates may also relate to the cognitive narrowing associated with high approach-motivated states. In the present study, we investigated motor-action preparation during pre-goal and post-goal states using an index of beta suppression over the motor cortex. The results revealed that beta suppression was greatest in pre-goal positive states, suggesting that higher levels of motor-action preparation occur during high approach-motivated positive states. Furthermore, beta and alpha suppression in the high approach-motivated positive states predicted greater cognitive narrowing. These results suggest that approach-motivated pre-goal states engage the neural substrates of motor-action preparation and cognitive narrowing. Individual differences in motor-action preparation relate to the degree of cognitive narrowing.  相似文献   

18.
Professionally significant enhancement of music and dance performance and mood has followed training with an EEG-neurofeedback protocol which increases the ratio of theta to alpha waves using auditory feedback with eyes closed. While originally the protocol was designed to induce hypnogogia, a state historically associated with creativity, the outcome was psychological integration, while subsequent applications focusing on raising the theta–alpha ratio, reduced depression and anxiety in alcoholism and resolved post traumatic stress syndrome (PTSD). In optimal performance studies we confirmed associations with creativity in musical performance, but effects also included technique and communication. We extended efficacy to dance and social anxiety. Diversity of outcome has a counterpart in wide ranging associations between theta oscillations and behaviour in cognitive and affective neuroscience: in animals with sensory-motor activity in exploration, effort, working memory, learning, retention and REM sleep; in man with meditative concentration, reduced anxiety and sympathetic autonomic activation, as well as task demands in virtual spatial navigation, focussed and sustained attention, working and recognition memory, and having implications for synaptic plasticity and long term potentiation. Neuroanatomical circuitry involves the ascending mescencephalic-cortical arousal system, and limbic circuits subserving cognitive as well as affective/motivational functions. Working memory and meditative bliss, representing cognitive and affective domains, respectively, involve coupling between frontal and posterior cortices, exemplify a role for theta and alpha waves in mediating the interaction between distal and widely distributed connections. It is posited that this mediation in part underpins the integrational attributes of alpha–theta training in optimal performance and psychotherapy, creative associations in hypnogogia, and enhancement of technical, communication and artistic domains of performance in the arts.  相似文献   

19.
An inexpensive circuit is described for EEG biofeedback or measurement. The circuit is designed to interface easily with most basic EEG machines. It taps the output from a single recording channel of the basic EEG instrument and provides the following for each EEG band (beta, alpha, theta, and delta): (a) very selective bandpass discrimination, (b) variable center frequency, (c) variable threshold at which feedback will be provided, or the measurement made, and (d) use with any biofeedback stimulus or measurement device that one wishes to switch contingent with S’s EEG rhythms.  相似文献   

20.
Anxious stress compromises cognitive executive performance. This occurs, for instance, in cognitive performance anxiety (CPA), in which anxiety about one’s cognitive performance causes that performance to actually deteriorate (e.g., test anxiety). This is thought to result from a prefrontal cortically (PFC) mediated failure of top-down attentional control over stress-induced automatic processing of threat-related information. In addition, stress-induced increased catecholamine influx into the PFC may directly compromise attentional function. Previous research has suggested that the ratio between resting state electroencephalographic (EEG) low- and high-frequency power (the theta/beta ratio) is related to trait attentional control, which might moderate these effects of stress on attentional function. The goals of the present study were to test the novel prediction that theta/beta ratio moderates the deleterious effects of CPA-like anxious stress on state attentional control and to replicate a previous finding that the theta/beta ratio is related to self-reported trait attentional control. After recording of baseline frontal EEG signals, 77 participants performed a stress induction or a control procedure. Trait attentional control was assessed with the Attentional Control Scale, whereas stress-induced changes in attentional control and anxiety were measured with self-report visual analogue scales. The hypothesized moderating influence of theta/beta ratio on the effects of stress on state attentional control was confirmed. Theta/beta ratio explained 28% of the variance in stress-induced deterioration of self-reported attentional control. The negative relationship between theta/beta ratio and trait attentional control was replicated (r = –.33). The theta/beta ratio reflects, likely prefrontally mediated, attentional control, and should be a useful biomarker for the study of CPA and other anxiety–cognition interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号