首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The elderly are known to exhibit declines in postural control during standing and walking, however little is known about how the elderly react under time-critical and challenging postural situations. The purpose of this study was to examine age-related differences in reaction time (RT) and the pattern of temporal coordination between center of pressure (COP), trunk and head motion during voluntary postural sway movements. Healthy young (n=10; mean=24 years; SD=5 years) and elderly men (n=8; mean=75 years; SD=2 years) stood on a force plate with tri-axial accelerometers attached to the head and lower trunk. Participants were required to generate sway in the anterior-posterior (AP) or medial-lateral (ML) direction in response to an auditory cue during two different testing conditions called Static reaction and Dynamic reaction. Static reactions involved the initiation of voluntary sway in either the AP or ML direction from quiet stance. Dynamic reactions involved an orthogonal switch of voluntary sway between the AP and ML directions. Compared to the young, elderly individuals exhibited slower RT during both Static and Dynamic reaction, and smaller differences in RT and phasing between COP, trunk, and head motion. The results of this study suggest that the elderly adopted more rigid coordination strategies compared to the young when executing a rapid change in direction of whole body motion. The rigid movement strategy of the elderly was presumably generated in an effort to compensate for increased challenge to the maintenance of stability.  相似文献   

2.
Spatial and metrical parameters of the eye and arm movements made by human subjects (N = 7) in response to visual targets that were stepped unexpectedly either once (single step) or twice (double step) were studied. For the double-step, the displacement of a visual target was decreased or increased in amplitude at intervals before and during a movement. Provided the second target step occurred more than 100 ms before the onset of movement, the amplitude of the subjects' first response was altered in the direction of the new target location. But this amplitude scaling was not always sufficient to reach the new target location, and a second corrective response was required. The latency in producing this second response was greatly increased above reaction time latencies of movements to single-step targets, especially when the target change occurred 100 ms or more before movement onset. These findings suggest that even though serial processing limitations delay the production of a second corrective response, continuous parallel processing of visual information enables the amplitude of the first response to be altered with minimal delay. This enables some degree of real-time continuous control by the visuomotor control system.  相似文献   

3.
Poor upper-limb coordination is a common difficulty for children with developmental coordination disorder (DCD). One hypothesis is that deviant muscle timing in proximal muscle groups results in poor postural and movement control. The relationship between muscle timing, arm motion and children's upper-limb coordination deficits has not previously been studied. The aim of this study was to investigate the relationship between functional difficulties with upper-limb motor skills and neuromuscular components of postural stability and coordination. Sixty-four children aged 8-10 years, 32 with DCD and 32 without DCD, participated in the study. The study investigated timing of muscle activity and resultant arm movement during a rapid, voluntary, goal-directed arm movement. Results showed that compared to children without DCD, children with DCD took significantly longer to respond to visual signals and longer to complete the goal-directed movement. Children with DCD also demonstrated altered activity in postural muscles. In particular, shoulder muscles, except for serratus anterior, and posterior trunk muscles demonstrated early activation. Further, anterior trunk muscles demonstrated delayed activation. In children with DCD, anticipatory function was not present in three of the four anterior trunk muscles. These differences support the hypothesis that in children with DCD, altered postural muscle activity may contribute to poor proximal stability and consequently poor arm movement control when performing goal-directed movement. These results have educational and functional implications for children at school and during activities of daily living and leisure activities and for clinicians assessing and treating children with DCD.  相似文献   

4.
This experiment examined whether rapid arm movements can be corrected in response to a change in target position that occurs just prior to movement onset, during saccadic suppression of displacement. Because the threshold of retinal input reaches its highest magnitude at that time, displacement of the visual target of a saccade is not perceived. Subjects (N = 6) were instructed to perform very rapid arm movements toward visual targets located 16, 20, and 24 degrees from midline (on average, movement time was 208 ms). On some trials the 20 degrees target was displaced 4 degrees either to the right or to the left during saccadic suppression. For double-step trials, arm movements did not deviate from their original trajectory. Movement endpoints and movement structure (i.e., velocity-and acceleration-time profiles) were similar whether or not target displacements occurred, showing the failure of proprioceptive signals or internal feedback loops to correct the arm trajectory. Following this movement, terminal spatially oriented movements corrected the direction of the initial movement (as compared with the single-step control trials) when the target eccentricity decreased by 4 degrees. Subjects were unaware of these spatial corrections. Therefore, spatial corrections of hand position were driven by the goal level of the task, which was updated by oculomotor corrective responses when a target shift occurred.  相似文献   

5.
Spatial and metrical parameters of the eye and arm movements made by human subjects (N = 7) in response to visual targets that were stepped unexpectedly either once (single step) or twice (double step) were studied. For the double-step, the displacement of a visual target was decreased or increased in amplitude at intervals before and during a movement. Provided the second target step occurred more than 100 ms before the onset of movement, the amplitude of the subjects' first response was altered in the direction of the new target location. But this amplitude scaling was not always sufficient to reach the new target location, and a second corrective response was required. The latency in producing this second response was greatly increased above reaction time latencies of movements to single-step targets, especially when the target change occurred 100 ms or more before movement onset. These findings suggest that even though serial processing limitations delay the production of a second corrective response, continuous parallel processing of visual information enables the amplitude of the first response to be altered with minimal delay. This enables some degree of real-time continuous control by the visuomotor control system.  相似文献   

6.
Despite importance for theories of perception, controversy exists as to whether information is available to the perceptual system about involuntary as well as voluntary eye movements. We measured the perceived direction of targets flashed briefly in an otherwise dark field during the primary phase of optokinetic afternystagmus (OKAN), an involuntary eye movement that persists in darkness following optokinetic stimulation. Perceived direction was measured by unseen pointing in one experiment and by pointing made under visual control in a second experiment. Pointing was essentially veridical in both experiments, indicating that accurate extra-retinal information about eye position (presumably, as efference copy) exists for OKAN. Illusory motion of visual targets, which can occur during involuntary oculomotor responses, therefore cannot be attributed to a lack of efference-copy signals for such eye movements.  相似文献   

7.
In two experiments, we investigated hemispheric electroencephalography (EEG) differences in 9(12) healthy volunteers during pointing to lateral and central targets. The questions addressed were whether horizontal pointing direction and the predictability of pointing direction modulated hemispheric differences (event-related lateralizations of the EEG = ERLs). To vary pointing direction predictability, targets were displayed either randomly at one of nine different positions on a screen (random) or at the same horizontal position in five subsequent trials (sequenced) while vertical positions varied randomly. Event-related lateralizations (ERLs) varied with pointing direction. This was true across changes in target eccentricity and pointing distance. Foci of the ERLs were in premotor and posterior parietal cortex, which might reflect the critical involvement of these areas in the control of visually guided reaching. Direction predictability reduced the parietal and premotor ERL before pointing onset, probably reflecting a lesser effort in visuomotor transformation. Predictability also added an overlying N2pc component to the early ERL after target onset and increased direction effects during movement.  相似文献   

8.
Two experiments were conducted to determine the spatial and temporal organization of the arm trajectory in human subjects as they pointed to single- and double-step target displacements. Subjects pointed either without (Experiment 1) or with (Experiment 2) vision of their moving hand throughout the trial. In both experiments, target perturbation occurring in double-step trials was clearly perceived by the subjects and was randomly introduced either at the onset or at peak velocity of hand movement. Regardless of whether or not visual reafference from the pointing hand was available, subjects corrected the trajectory of their moving hand to accommodate the double-step. Moreover, asymmetrical velocity profiles were observed for responses to both types of target, with or without vision of the moving hand. The acceleration phase was a fixed pattern independent of the type of step stimulation. However, a clear dissociation, both in the deceleration phase and accuracy of responses to double-step targets, emerged according to the timing of target perturbation. When targets were perturbed at the onset of hand movement, subjects modulated the deceleration phase of their response to compensate for 88 to 100% of the second target displacement. In contrast, when targets were perturbed at peak velocity of hand movement, subjects were unable to modulate the deceleration phase adequately and compensated for only 20 to 40% of the perturbation. These results suggest that motor error is dynamically evaluated during the acceleration phase of a movement toward a perturbed target, allowing amendments to the trajectory to be performed during the deceleration phase. This main corrective process appears to be basically independent of visual reafference from the moving hand.  相似文献   

9.
Postural responses, triggered by sensory feedback, are present very early in a child’s development. The purpose of the present study was to investigate the ability of children to anticipate postural disturbances caused by self-initiated movements and their ability to coordinate anticipatory postural adjustments with movement execution. Children (N = 32) aged 4 to 14 years were asked to stand quietly on a stable force plate and to raise their right arm forward (or backward) to the horizontal position after a visual stimulus. Changes in the center of pressure beneath the feet were recorded before and during the arm raise. The anticipatory (feedforward) postural patterns seen before the arm movement, and noted in a previous study of adults, were present in the youngest of the children (4 years, 2 months). Longer reaction times and inconsistent postural responses (in the anteroposterior direction) suggest that children are less capable than adults of coordinating the anticipated postural adjustment with the forthcoming limb movement, however. In the lateral plane, anticipatory postural responses were initiated more consistently.  相似文献   

10.
Emerging evidence highlights that arm movements exert a substantial and functionally relevant contribution on quiet standing balance control in young adults. Ageing is associated with “non-functional” compensatory postural control strategies (i.e., lower limb co-contraction), which in turn, may increase the reliance on an upper body strategy to control upright stance. Thus, the primary purpose of this study was to compare the effects of free versus restricted arm movements on balance performance in young and older adults, during tasks of different difficulty. Fifteen young (mean ± SD age; 21.3 ± 4.2 years) and fifteen older (mean ± SD age; 73.3 ± 5.0 years) adults performed bipedal, semi-tandem and tandem balance tasks under two arm position conditions: restricted arm movements and free arm movements. Centre of pressure (COP) amplitude and frequency were calculated as indices of postural performance and strategy, respectively. Especially in older adults, restriction of arm movement resulted in increased sway amplitude and frequency, which was primarily observed for the mediolateral direction. Further, increasing balance task difficulty raised the arm restriction cost (ARC; a new measure to quantify free vs. restricted arm movement differences in postural control) that was more prominent in older adults. These findings indicate the ARC provides a measure of reliance on the upper body for balance control and that arm movement is important for postural control in older adults, especially during tasks of greater difficulty.  相似文献   

11.
Postural responses, triggered by sensory feedback, are present very early in a child's development. The purpose of the present study was to investigate the ability of children to anticipate postural disturbances caused by self-initiated movements and their ability to coordinate anticipatory postural adjustments with movement execution. Children (N = 32) aged 4 to 14 years were asked to stand quietly on a stable force plate and to raise their right arm forward (or backward) to the horizontal position after a visual stimulus. Changes in the center of pressure beneath the feet were recorded before and during the arm raise. The anticipatory (feedforward) postural patterns seen before the arm movement, and noted in a previous study of adults, were present in the youngest of the children (4 years, 2 months). Longer reaction times and inconsistent postural responses (in the anteroposterior direction) suggest that children are less capable than adults of coordinating the anticipated postural adjustment with the forthcoming limb movement, however. In the lateral plane, anticipatory postural responses were initiated more consistently.  相似文献   

12.
Coordination of limb segments in graphic motor behavior has been studied primarily in cyclic tasks. In the present study, limb segment recruitment patterns were investigated in a discrete line-drawing task. Subjects (N = 11) performed pointing movements varying in direction, amplitude, and speed. The contributions of index finger, hand, and arm to the movement were analyzed by evaluating the angular displacements in 7 joint dimensions. The results showed that amplitude and direction affected limb segment involvement in the same way they have been reported to affect it in cyclic movements. Upward left- (up-left) directed movements were primarily achieved by fingers and arm, whereas upward right- (up-right) directed movements were accomplished with the hand and the arm. Large amplitudes elicited not only an increase of proximal but also a decrease of distal limb segment involvement, especially in the up-left direction. In the present discrete pointing task, effects of speed on limb segment involvement were different from speed effects that were observed earlier in cyclic tasks: Larger limb segments became more involved in fast than in slow discrete movements. With respect to the timing of limb segment recruitment, all joints tended to move simultaneously, but small deviations from synchronous joint movement onset and offset were present. The results are discussed in the context of recent theories of limb segment coordination.  相似文献   

13.
ABSTRACT

The present study examined the effects of emotions on eye movements, head motion, and iPad motion during reading. Thirty-one participants read neutral, emotionally negative texts and emotionally positive texts on a digital tablet and both participants’ eye movements and body movements were recorded using respectively eye-tracking glasses and a motion capture system. The results showed that emotionally positive texts were read faster than neutral texts, and that readers’ movements decreased when reading emotional texts regardless of valence polarity. Recent studies suggested that postural movements may reflect cognitive engagement and especially the engagement in the task to be done. Our findings seem to validate this hypothesis of a bodily engagement in reading emotional contents. The present results suggest that the novel methodology of eye and postural movement recordings is informative in studying the readers’ embodied engagement during reading emotional materials.  相似文献   

14.
An experiment was conducted to compare the effects of bilateral and unilateral stance on postural fluctuations and intralimb coordination during active balance control. Fifteen participants stood bilaterally and unilaterally while conducting a pointing task with an outstretched arm. Excursion of center of foot pressure (CoP) and limb movements were recorded with a force plate and eight dual-axis accelerometers, respectively. Compared to bilateral stance, unilateral stance resulted in wider CoP trajectories and greater postural fluctuations, especially in the lower limbs. The limb-dependent postural fluctuations during unilateral stance were associated with an increased coupling between the upper limb segments and a decreased coupling between the segments of the stance leg. Unilateral stance further resulted in greater regularity and spectral changes in postural fluctuations of the trunk and lower limb due to increased central oscillations (8-15 Hz). The observed structural differences in postural fluctuations between unilateral and bilateral stance strongly suggested that the postural control system modulates joint stiffness in a stance-dependent manner. Probably, in unilateral stance, attentive control was shifted to the stance leg at the expense of increasing arm stiffness to reduce movement redundancy.  相似文献   

15.
In several recent studies, saccadic eye movements were found to be influenced by concurrent reaching movements. The authors investigated whether that influence originates in limb kinematic or kinetic signals. To dissociate those 2 possibilities, the authors required participants (N = 6) to generate pointing movements with a mass that either resisted or assisted limb motion. With practice, participants were able to generate pointing responses with very similar kinematics but whose kinetics varied in a systematic manner. The results showed that saccadic output was altered by the amount of force required to move the arm, consistent with an influence from limb kinetic signals. Because the interaction occurred before the pointing response began, the authors conclude that a predictive signal related to limb kinetics modulates saccadic output during tasks requiring eye-hand coordination.  相似文献   

16.
Task-irrelevant features of arowhead cursors may generate conflict during cursor placement within graphical user interfaces. Arrowheads can signify location, but also cue direction and feature in optical illusions. To address the influence of conflicting cues, 14 participants used arrowhead cursors (standard, oversized) pointing upward or downward to move to targets (7.5, 15-mm diameter) situated at the top or bottom of the screen. Compatible arrowhead orientation improved response initiation. Cursor size, orientation, direction of motion, and target size interacted during cursor movement. Overshooting occurred for oversized cursors in the direction the arrow pointed for larger targets. Larger compatible arrowhead cursors elicit less efficient cursor positioning movements that are more susceptible to illusory processes, posing implications for design of cursors and graphical user interfaces.  相似文献   

17.
Coordinated control of eye and hand movements in dynamic reaching   总被引:3,自引:0,他引:3  
In the present study, we integrated two recent, at first sight contradictory findings regarding the question whether saccadic eye movements can be generated to a newly presented target during an ongoing hand movement. Saccades were measured during so-called adaptive and sustained pointing conditions. In the adapted pointing condition, subjects had to direct both their gaze and arm movements to a displaced target location. The results showed that the eyes could fixate the new target during pointing. In addition, a temporal coupling of these corrective saccades was found with changes in arm movement trajectories when reaching to the new target. In the sustained pointing condition, however, the same subjects had to point to the initial target, while trying to deviate their gaze to a new target that appeared during pointing. It was found that the eyes could not fixate the new target before the hand reached the initial target location. Together, the results indicate that ocular gaze is always forced to follow the target intended by a manual arm movement. A neural mechanism is proposed that couples ocular gaze to the target of an arm movement. Specifically, the mechanism includes a reach neuron layer besides the well-known saccadic layer in the primate superior colliculus. Such a tight, sub-cortical coupling of ocular gaze to the target of a reaching movement can explain the contrasting behavior of the eyes in dependency of whether the eye and hand share the same target position or attempt to move to different locations.  相似文献   

18.
The present study investigated Bernstein's [The co-ordination and regulation of movements, 1967] proposal regarding the three stages of learning in the changing coordination and control of redundant joint-space degrees of freedom. Six participants practiced maintaining balance on a moving platform that was sinusoidally translated in the anterior-posterior direction for 30 trials on day 1 and 10 trials on day 2. At the beginning of practice, the motion of the torso and limb segments was less coherent in the attempt to compensate for the movement of the support surface in retaining a balanced posture. However, with practice, the organization of a compensatory postural coordination mode became highly coherent and also progressively utilized the passive, inertial forces generated by the movement of the support surface. The findings support the propositions that: (a) the pathway of change over time in the coordination pattern of the torso and joint motions depends on the task goal and constraints to action and (b) the changes in limb and torso motion are in support of the learning of a global body center of mass/platform dynamic.  相似文献   

19.
Using the “kinaesthetic memory for the target” technique, differences in the accuracy of pointing to a target with the right and left arms are analysed. The effect of rotation of the head to left and right upon this process is also studied.

With the head normally orientated, it was found that pointing with the right arm is significantly better than with the left. Accuracy of pointing is greater with the target directly in front of the body than when it lies to either left or right side.

When the head is rotated, the direction of the pointing error is inversely related to the direction of rotation.

The study suggests that the precision of control over arm (in the absence of vision) is related to the varying ability of individual subjects to correlate limb movements with the prevailing orientation of the body, especially of the head and neck. This is additional to the influences of genetically-determined handedness and of the sensory input from the moving limb.  相似文献   

20.
Origins of submovements during pointing movements   总被引:1,自引:0,他引:1  
Submovements that are frequently observed in the final portion of pointing movements have traditionally been viewed as pointing accuracy adjustments. Here we re-examine this long-lasting interpretation by developing evidence that many of submovements may be non-corrective fluctuations arising from various sources of motor output variability. In particular, non-corrective submovements may emerge during motion termination and during motion of low speed. The contribution of these factors and the factor of accuracy regulation in submovement production is investigated here by manipulating movement mode (discrete, reciprocal, and passing) and target size (small and large). The three modes provided different temporal combinations of accuracy regulation and motion termination, thus allowing us to disentangle submovements associated with each factor. The target size manipulations further emphasized the role of accuracy regulation and provided variations in movement speed. Gross and fine submovements were distinguished based on the degree of perturbation of smooth motion. It was found that gross submovements were predominantly related to motion termination and not to pointing accuracy regulation. Although fine submovements were more frequent during movements to small than to large targets, other results show that they may also be not corrective submovements but rather motion fluctuations attributed to decreases in movement speed accompanying decreases in target size. Together, the findings challenge the traditional interpretation, suggesting that the majority of submovements are fluctuations emerging from mechanical and neural sources of motion variability. The implications of the findings for the mechanisms responsible for accurate target achievement are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号