首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has long been known that the number of letters in a word has more of an effect on recognition speed and accuracy in the left visual field (LVF) than in the right visual field (RVF) provided that the word is presented in a standard, horizontal format. After considering the basis of the length by visual field interaction two further differences between the visual fields/hemispheres are discussed: (a) the greater impact of format distortion (including case alternation) in the RVF than in the LVF and (b) the greater facilitation of lexical decision by orthographic neighbourhood size (N) in the LVF than in the RVF. In the context of split fovea accounts of word recognition, evidence is summarised which indicates that the processing of words presented at fixation is affected by the number of letters to the left of fixation but not by the number of letters to the right and by the number of orthographic neighbours activated by letters to the left of fixation but not by the number of orthographic neighbours activated by letters to the right of fixation. A model of word recognition is presented which incorporates the notion that the left hemisphere has sole access to a mode of word recognition that involves parallel access from letter forms to the visual input lexicon, is disrupted by format distortion, and does not employ top-down support of the letter level by the word level.  相似文献   

2.
Observers identified consonant–vowel–consonant trigrams with the letters arranged vertically by pronouncing the stimulus (treating the bottom letter as the first letter) and spelling it from bottom to top. On each trial, the trigram was presented to the left visual field/right hemisphere (LVF/RH), to the right visual field/left hemisphere (RVF/LH), or to both visual fields simultaneously (BILATERAL trials). Quantitative and qualitative visual field differences were identical to those found when observers used a more natural response output order, treating the top letter of the trigram as the first letter. The results suggest that, regardless of output order, attention is distributed across the three letters in a relatively slow, top-to-bottom fashion on LVF/RH and BILATERAL trials, whereas attention is distributed more rapidly and evenly across the three letters on RVF/LH trials.  相似文献   

3.
Participants report briefly-presented words more accurately when two copies are presented, one in the left visual field (LVF) and another in the right visual field (RVF), than when only a single copy is presented. This effect is known as the 'redundant bilateral advantage' and has been interpreted as evidence for interhemispheric cooperation. We investigated the redundant bilateral advantage in dyslexic adults and matched controls as a means of assessing communication between the hemispheres in dyslexia. Consistent with previous research, normal adult readers in Experiment 1 showed significantly higher accuracy on a word report task when identical word stimuli were presented bilaterally, compared to unilateral RVF or LVF presentation. Dyslexics, however, did not show the bilateral advantage. In Experiment 2, words were presented above fixation, below fixation or in both positions. In this experiment both dyslexics and controls benefited from the redundant presentation. Experiment 3 combined whole words in one visual field with word fragments in the other visual field (the initial and final letters separated by spaces). Controls showed a bilateral advantage but dyslexics did not. In Experiments 1 and 3, the dyslexics showed significantly lower accuracy for LVF trials than controls, but the groups did not differ for RVF trials. The findings suggest that dyslexics have a problem of interhemispheric integration and not a general problem of processing two lexical inputs simultaneously.  相似文献   

4.
The cerebral hemispheres have been proposed to engage different word recognition strategies: the left hemisphere implementing a parallel, and the right hemisphere, a sequential, analysis. To investigate this notion, we asked participants to name words with an early or late orthographic uniqueness point (OUP), presented horizontally to their left (LVF), right (RVF), or both fields of vision (BVF). Consistent with past foveal research, Experiment 1 produced a robust facilitatory effect of early OUP for RVF/BVF presentations, indicating the presence of sequential processes in lexical retrieval. The effect was absent for LVF trials, which we argue results from the disadvantaged position of initial letters of words presented in the LVF. To test this proposition, Experiment 2 assessed the discriminability of various letter positions in the visual fields using a bar-probe task. The obtained error functions highlighted the poor discriminability of initial letters in the LVF and latter letters in the RVF. To confirm that this asymmetry in initial letter acuity was responsible for the absent OUP effect for LVF presentations, Experiment 3 replicated Experiment 1 using vertical stimulus presentations. Results indicated a marked facilitatory effect of early OUP across visual fields, supporting our contention that the lack of OUP effect for LVF presentations in Experiment 1 resulted from poor discriminability of the initial letters. These findings confirm the presence of sequential processes in both left and right hemisphere word recognition, casting doubt on parallel models of word processing.  相似文献   

5.
Readers acquire information outside the current eye fixation. Previous research indicates that having only the fixated word available slows reading, but when the next word is visible, reading is almost as fast as when the whole line is seen. Parafoveal-on-foveal effects are interpreted to reflect that the characteristics of a parafoveal word can influence fixation on a current word. Prior studies also show that words presented to the right visual field (RVF) are processed faster and more accurately than words in the left visual field (LVF). This asymmetry results either from an attentional bias, reading direction, or the cerebral asymmetry of language processing. We used eye-fixation-related potentials (EFRP), a technique that combines eye-tracking and electroencephalography, to investigate visual field differences in parafoveal-on-foveal effects. After a central fixation, a prime word appeared in the middle of the screen together with a parafoveal target that was presented either to the LVF or to the RVF. Both hemifield presentations included three semantic conditions: the words were either semantically associated, non-associated, or the target was a non-word. The participants began reading from the prime and then made a saccade towards the target, subsequently they judged the semantic association. Between 200 and 280 ms from the fixation onset, an occipital P2 EFRP-component differentiated between parafoveal word and non-word stimuli when the parafoveal word appeared in the RVF. The results suggest that the extraction of parafoveal information is affected by attention, which is oriented as a function of reading direction.  相似文献   

6.
Several studies have shown that laterally presented consonant–vowel–consonant (CVC) strings produce both superior performance, and a more wholistic processing strategy in the right visual field/left hemisphere (RVF/LHEM), and a more sequential strategy in the inferior left visual field (LVF). To determine whether these strategies are applied to other types of trigrams subjects (n= 30) were asked to identify consonant and symbol trigrams briefly projected unilaterally to the LVF or RVF, or bilaterally (the same trigram in both fields—BVF). A second group of subjects (n= 30) first practiced pronouncing consonant trigrams and then viewed them tachistoscopically. Both tasks yield RVF advantages. Symbols are processed more wholistically in the LVF, more sequentially in the RVF and in an intermediate pattern when presented bilaterally. In contrast, subjects seem to chunk letters as bigrams, and do so equally well in all fields, and visual field differences in strategies emerge for consonants only when they are pronounced. Pronounceability of consonant trigrams, assessed with ratings and vocal reaction times, was predicted by orthographic regularity. Since the RHEM has limited phonetic skills, but it, like the LHEM, is privy to information on orthographic regularity, the error pattern on consonant strings indicates non-phonetic processing, whereas the RVF wholistic strategy for consonant–vowel–consonant strings appears to reflect phonetic processing.  相似文献   

7.
Studied parafoveal word processing during eye fixations in reading to answer two questions: (a) Is the processing of parafoveally available words limited to the identification of beginning letters? (b) Does the parafoveal processing of words affect the following interword saccade? Reading afforded either no parafoveal preview, preview of beginning trigrams, preview of ending trigrams, or preview of the whole parafoveal word. Previews were controlled by replacing original letters either with X's or dissimilar letters. Preview benefits were larger for the whole word previews than for beginning or ending trigram previews. X-masks yielded preview benefits from intact beginning and ending trigrams but dissimilar letter masks yielded benefits from beginning trigrams only. Saccades were larger for whole word previews than for no previews. These results support Logogen-type models of word recognition and a model of saccade computation that posits a time-locked functional relation between the acquisition of parafoveal word information and the positioning of each fixation.  相似文献   

8.
Three experiments explore aspects of the dissociable neural subsystems theory of hemispheric specialisation proposed by Marsolek and colleagues, and in particular a study by [Deason, R. G., & Marsolek, C. J. (2005). A critical boundary to the left-hemisphere advantage in word processing. Brain and Language, 92, 251–261]. Experiment 1A showed that shorter exposure durations for lower-case words (13 ms) are associated with reduced right visual field (RVF) advantages compared with longer exposure durations (144 ms). Experiment 1B compared report accuracy for lower case and mixed case words at the same exposure duration (144 ms). The RVF advantage was reduced for mixed case words due to case alternation having more of an adverse effect in the RVF than in the LVF. Experiment 2 tested a different prediction of dissociable neural subsystems theory. Four-letter words were presented in mixed case in the LVF or RVF for 100 ms. They were preceded at the same location by a prime which could be in the same word in the same alternation pattern (e.g., FlAg–FlAg), the same word in the opposite alternation pattern (e.g., fLaG–FlAg), or an unrelated letter string in the same or opposite case alternation pattern (WoPk–FlAg or wOpK–FlAg). Relative to performance in the letter string prime conditions, which did not differ significantly between the two visual fields, there was more of an effect of word primes in the RVF than in the LVF. Importantly, the benefit of a word prime was the same whether the prime was in the same alternation pattern or was in the opposition alternation pattern. We argue that these results run contrary to the predictions of dissociable neural subsystems theory and are more compatible with theories which propose that a left hemisphere word recognition system is responsible for identifying written words, whether they are presented in the LVF or the RVF, and that letters are processed to an abstract graphemic level of representation before being identified by that system.  相似文献   

9.
Accuracy and reaction time (RT) of judgments about sameness vs. difference of (a) names of two letters and (b) shapes of two nonverbal forms were examined for stimuli presented to the center, left (LVF), and right (RVF) visual fields. For same-name letter pairs during Experiment I, responses were more accurate and faster for LVF than for RVF trials on an initial 90-trial block, but this difference was reversed by a third 90-trial block. The RVF advantage for RT was maintained over Trial Blocks 4 and 5, given during a second session, but had disappeared on Trial Blocks 6 through 9 as RT reached the same asymptotic level for both visual fields. No LVF-RVF differences were obtained at any level of practice for different-name letter pairs or for any of the form pairs. Experiment II replicated the shift from LVF toward RVF advantage that occurred over the first three trial blocks of Experiment I and demonstrated that such a shift does not occur when the letters are perceptually degraded. The results were discussed in terms of differences in cerebral hemisphere specialization for visuospatial vs. abstract stages of letter processing and changes with practice in the relative difficulty of these stages.  相似文献   

10.
Right-handed adults were asked to identify by name bilaterally presented words and pronounceable nonwords. For words in the normal horizontal format, word length (number of letters) affected left visual hemifield (LVF) but not right visual hemifield (RVF) performance in Experiments 1, 2, 3, 5, and 6. This finding was made for words of high and low frequency (Experiment 6) and imageability (Experiment 5). It also held across markedly different levels of overall performance (Experiments 1 and 2), and across different relative positionings of short and long words in the LVF and RVF (Experiment 3). Experiment 4 demonstrated that the variable affecting LVF performance is the number of letters in a word, not its phonological length. For pronounceable nonwords (Experiment 7) and words in unusual formats (Experiment 8), however, length affected both LVF and RVF performance. The characteristics identified for RVF performance in these experiments also hold for the normal reading system. In this (normal) system the absence of length effects for horizontally formatted words is generally taken to reflect the processes involved in lexical access. Length effects in the normal reading system are thought to arise when lexical access for unusually formatted words and for the pronunciation of nonwords requires the short-term storage of information at a graphemic level of analysis. The characteristics of LVF performance indicate that horizontally formatted words presented to the right cerebral hemisphere can only achieve lexical access by a method that requires the short-term storage of graphemic information. This qualitative difference in methods of lexical access applies regardless of whether the right hemisphere is seen as accessing words in the left hemisphere's lexicon or words in a lexicon of its own.  相似文献   

11.
Hemispheric asymmetry was examined for native English speakers identifying consonant-vowel-consonant (CVC) non-words presented in standard printed form, in standard handwritten cursive form or in handwritten cursive with the letters separated by small gaps. For all three conditions, fewer errors occurred when stimuli were presented to the right visual field/left hemisphere (RVF/LH) than to the left visual field/right hemisphere (LVF/RH) and qualitative error patterns indicated that the last letter was missed more often than the first letter on LVF/RH trials but not on RVF/LH trials. Despite this overall similarity, the RVF/LH advantage was smaller for both types of cursive stimuli than for printed stimuli. In addition, the difference between first-letter and last-letter errors was smaller for handwritten cursive than for printed text, especially on LVF/RH trials. These results suggest a greater contribution of the right hemisphere to the identification of handwritten cursive, which is likely related visual complexity and to qualitative differences in the processing of cursive versus print.  相似文献   

12.
Letter identification is reduced when the target letter is surrounded by other, flanking letters. This visual crowding is known to be impacted by physical changes to the target and flanks, such as spatial frequency content, polarity, and interletter spacing. There is also evidence that visual crowding is reduced when the flanking letters and the target letter form a word. The research reported here investigated whether these two phenomena are independent of each other or whether the degree of visual crowding impacts the benefit of word context. Stimulus duration thresholds for letters presented alone and for the middle letters of 3-letter words and nonwords were determined for stimuli presented at the fovea and at the periphery. In Experiment 1, the benefit of word context was found to be the same at the fovea, where visual crowding is minimal, and at the periphery, where visual crowding is substantial. In Experiment 2, visual crowding was manipulated by changing the interletter spacing. Here, too, the benefit of word context was fairly constant for the two retinal locations (fovea or periphery), as well as with changes in interletter spacing. These data call into question both the idea that the benefit of word context is greater when stimulus quality is reduced (as is the case with visual crowding) and the idea that words are processed more effectively when they are presented at the fovea.  相似文献   

13.
The interfering effect of an unattended stimulus on processing of an attended item was studied in a single split-brain participant (LB) and in normal controls. Pairs of letters were presented to the left visual field (LVF), right visual field (RVF), or bilaterally. Participants attended to the rightmost letter while attempting to ignore the leftmost letter. Responses associated with the attended and to-be-ignored letters could be compatible or incompatible. Manual response latencies were generally slower on Response Incompatible compared to Response Compatible trials. Notably, LB displayed this effect on Bilateral trials, where target and distractor were presented to opposite visual fields. LB was unable to perform a same-different matching task with bilateral letter stimuli, but was able to name bilateral letters accurately. Hence, in the bilateral condition, the ability to cross-compare letters was dissociated from attentional interference and from letter naming. Implications of these findings are discussed.  相似文献   

14.
Native Japanese speakers identified three-letter kana stimuli presented to the left visual field and right hemisphere (LVF/RH), to the right visual field and left hemisphere (RVF/LH), or to both visual fields and hemispheres simultaneously (BILATERAL trials). There were fewer errors on RVF/LH and BILATERAL trials than on LVF/RH trials. Qualitative analysis of error patterns indicated that there were many fewer errors of first-letter identification than of last-letter identification, suggesting top-to-bottom scanning of the kana characters. In contrast to similar studies presenting nonword letter trigrams to native English speakers, qualitative error patterns were identical for the three visual field conditions. Taken together with the results of earlier studies, the results of the present experiment indicate that the ubiquitous RVF/LH advantage reflects a left-hemisphere superiority for phonetic processing that generalizes across specific languages. At the same time, qualitative aspects of hemispheric asymmetry differ from one language to the next and may depend on such things as the way in which individual characters map onto the pronunciation of words and nonwords.  相似文献   

15.
Letter position dyslexia (LPD) is a peripheral dyslexia that causes errors of letter order within words. So far, only cases of acquired LPD have been reported. This study presents selective LPD in its developmental form, via the testing of 11 Hebrew‐speaking individuals with developmental dyslexia. The study explores the types of errors and effects on reading in this dyslexia, using a variety of tests: reading aloud, lexical decision, same‐different decision, definition and letter naming. The findings indicate that individuals with developmental LPD have a deficit in the letter position encoding function of the orthographic visual analyser, which leads to underspecification of letter position within words. Letter position errors occur mainly in adjacent middle letters, when the error creates another existing word. The participants did not show an output deficit or phonemic awareness deficit. The selectivity of the deficit, causing letter position errors but no letter identity errors and no migrations between words, supports the existence of letter position encoding function as separate from letter identification and letter‐to‐word binding.  相似文献   

16.
The split fovea theory proposes that visual word recognition of centrally presented words is mediated by the splitting of the foveal image, with letters to the left of fixation being projected to the right hemisphere (RH) and letters to the right of fixation being projected to the left hemisphere (LH). Two lexical decision experiments aimed to elucidate word recognition processes under the split fovea theory are described. The first experiment showed that when words were presented centrally, such that the initial letters were in the left visual field (LVF/RH), there were effects of orthographic neighborhood, i.e., there were faster responses to words with high rather than low orthographic neighborhoods for the initial letters ('lead neighbors'). This effect was limited to lead-neighbors but not end-neighbors (orthographic neighbors sharing the same final letters). When the same words were fully presented in the LVF/RH or right visual field (RVF/LH, Experiment 2), there was no effect of orthographic neighborhood size. We argue that the lack of an effect in Experiment 2 was due to exposure to all of the letters of the words, the words being matched for overall orthographic neighborhood count and the sub-parts no longer having a unique effect. We concluded that the orthographic activation found in Experiment 1 occurred because the initial letters of centrally presented words were projected to the RH. The results support the split fovea theory, where the RH has primacy in representing lead neighbors of a written word.  相似文献   

17.
This study reports two Hebrew-speaking individuals with acquired visual dyslexia. They made predominantly visual errors in reading, in all positions of the target words. Although both of them produced visual errors, their reading patterns crucially differed in three respects. KD had almost exclusively letter substitutions, and SF also made letter omissions, additions, letter position errors, and between-word migrations. KD had difficulties accessing abstract letter identity in single-letter tasks, and in letter naming, unlike SF, who named letters well. KD did not show lexical effects such as frequency and orthographic neighbourhood effects and produced nonword responses, whereas SF showed lexical effects, with a strong tendency to produce word responses. We suggest that these two patterns stem from two different deficits - KD has letter identity visual dyslexia, which results from a deficit in abstract letter identification in the orthographic-visual analysis system, yielding erroneous letter identities, whereas SF has visual-output dyslexia, which results from a deficit at a later stage, a stage that combines the outputs of the various functions of the orthographic-visual analyzer.  相似文献   

18.
Right-handed participants respond more quickly and more accurately to written words presented in the right visual field (RVF) than in the left visual field (LVF). Previous attempts to identify the neural basis of the RVF advantage have had limited success. Experiment 1 was a behavioral study of lateralized word naming which established that the words later used in Experiment 2 showed a reliable RVF advantage which persisted over multiple repetitions. In Experiment 2, the same words were interleaved with scrambled words and presented in the LVF and RVF to right-handed participants seated in an MEG scanner. Participants read the real words silently and responded "pattern" covertly to the scrambled words. A beamformer analysis created statistical maps of changes in oscillatory power within the brain. Those whole-brain maps revealed activation of the reading network by both LVF and RVF words. Virtual electrode analyses used the same beamforming method to reconstruct the responses to real and scrambled words in three regions of interest in both hemispheres. The middle occipital gyri showed faster and stronger responses to contralateral than to ipsilateral stimuli, with evidence of asymmetric channeling of information into the left hemisphere. The left mid fusiform gyrus at the site of the 'visual word form area' responded more strongly to RVF than to LVF words. Activity in speech-motor cortex was lateralized to the left hemisphere, and stronger to RVF than LVF words, which is interpreted as representing the proximal cause of the RVF advantage for naming written words.  相似文献   

19.
Crowding occurs when the perception of a suprathreshold target is impaired by nearby distractors, reflecting a fundamental limitation on visual spatial resolution. It is likely that crowding limits music reading, as each musical note is crowded by adjacent notes and by the five-line staff, similar to word reading, in which letter recognition is reduced by crowding from adjacent letters. Here, we tested the hypothesis that, with extensive experience, music-reading experts have acquired visual skills such that they experience a smaller crowding effect, resulting in higher music-reading fluency. Experts experienced a smaller crowding effect than did novices, but only for musical stimuli, not for control stimuli (Landolt Cs). The magnitude of the crowding effect for musical stimuli could be predicted by individual fluency in music reading. Our results highlight the role of experience in crowding: Visual spatial resolution can be improved specifically for objects associated with perceptual expertise. Music-reading rates are likely limited by crowding, and our results are consistent with the idea that experience alleviates these limitations.  相似文献   

20.
A lexical decision experiment tested visual field stimulation of word targets after priming the central visual field by the target word outline shape and/or an incomplete sentence. In general, RT was shorter and accuracy better for target words presented to the RVF. Responses were quicker and more accurate to target words presented to either visual hemifield after priming by either a congruent incomplete sentence or a congruent word outline shape (WOS). However, the joint effect of WOS and an incomplete sentence as co-primes was different when the succeeding word target appeared in the RVF than when it appeared in the LVF. While a congruent WOS and incomplete sentence acting as co-primes reduced RT to LVF targets orthogonally. the two variables operated interactively as co-primes on target words presented to the RVF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号