首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The findings of previous investigations into word perception in the upper and the lower visual field (VF) are variable and may have incurred non-perceptual biases caused by the asymmetric distribution of information within a word, an advantage for saccadic eye-movements to targets in the upper VF and the possibility that stimuli were not projected to the correct retinal locations. The present study used the Reicher-Wheeler task and an eye-tracker to show that, using stringent methodology, a right over left VF advantage is observed for word recognition, but that no differences were found between the upper and the lower VF for either word or non-word recognition. The results are discussed in terms of the neuroanatomy and perceptual abilities of the upper and the lower VF and implications for other studies of letter-string perception in the upper and the lower VF are presented.  相似文献   

2.
Previous studies have shown a right-visual-field (RVF)/left-hemisphere (LH) advantage in Chinese phonetic compound pronunciation. Here, we contrast the processing of two phonetic compound types: a dominant structure in which a semantic component appears on the left and a phonetic component on the right (SP characters), and a minority structure with the opposite arrangement (PS characters). We show that this RVF/LH advantage was observed only in SP character pronunciation, but not in PS character pronunciation. This result suggests that SP character processing is more LH lateralized than is PS character processing and is consistent with corresponding ERP N170 data. This effect may be due to the dominance of SP characters in the lexicon, which makes readers opt to obtain phonological information from the right of the characters. This study thus shows that the overall information distribution of word components in the lexicon may influence how written words are processed in the brain. Supplemental materials for this article may be downloaded from http://cabn .psychonomic-journals.org/content/supplemental.  相似文献   

3.
In Chinese orthography, a dominant character structure exists in which a semantic radical appears on the left and a phonetic radical on the right (SP characters); a minority opposite arrangement also exists (PS characters). As the number of phonetic radical types is much greater than semantic radical types, in SP characters the information is skewed to the right, whereas in PS characters it is skewed to the left. Through training a computational model for SP and PS character recognition that takes into account of the locations in which the characters appear in the visual field during learning, but does not assume any fundamental hemispheric processing difference, we show that visual field differences can emerge as a consequence of the fundamental structural differences in information between SP and PS characters, as opposed to the fundamental processing differences between the two hemispheres. This modeling result is also consistent with behavioral naming performance. This work provides strong evidence that perceptual learning, i.e., the information structure of word stimuli to which the readers have long been exposed, is one of the factors that accounts for hemispheric asymmetry effects in visual word recognition.  相似文献   

4.
Perceptual asymmetries have been explained by structural, attentional bias and attentional advantage models. Structural models focus on asymmetries in the physical access information has to the hemispheres, whereas attentional models focus on asymmetries in the operation of attentional processes. A series of experiments was conducted to assess the contribution of attentional mechanisms to the right visual field (RVF) advantage found for word recognition. Valid, invalid and neutral peripheral cues were presented at a variety of stimulus onset asynchronies to manipulate spatial attention. Results indicated a significant RVF advantage and cueing effect. The effect of the cue was stronger for the left visual field than the RVF. This interaction supports the attentional advantage model which suggests that the left hemisphere requires less attention to process words. The attentional asymmetry is interpreted in terms of the different word processing styles used by the left and right hemispheres. These results have ramifications for the methodology used in divided visual field research and the interpretation of this research.  相似文献   

5.
Native Japanese speakers identified three-letter kana stimuli presented to the left visual field and right hemisphere (LVF/RH), to the right visual field and left hemisphere (RVF/LH), or to both visual fields and hemispheres simultaneously (BILATERAL trials). There were fewer errors on RVF/LH and BILATERAL trials than on LVF/RH trials. Qualitative analysis of error patterns indicated that there were many fewer errors of first-letter identification than of last-letter identification, suggesting top-to-bottom scanning of the kana characters. In contrast to similar studies presenting nonword letter trigrams to native English speakers, qualitative error patterns were identical for the three visual field conditions. Taken together with the results of earlier studies, the results of the present experiment indicate that the ubiquitous RVF/LH advantage reflects a left-hemisphere superiority for phonetic processing that generalizes across specific languages. At the same time, qualitative aspects of hemispheric asymmetry differ from one language to the next and may depend on such things as the way in which individual characters map onto the pronunciation of words and nonwords.  相似文献   

6.
It has been reported that tachistoscopic perception of single Chinese characters is better with a left-visual-field (LVF) than with a right-visual-field (RVF) presentation and that of Chinese words consisting of characters is better with a RVF presentation (O. J. L. Tzeng, D. L. Hung, B. Cotton, & S.-Y. Wang, 1979, Nature (London), 382, 499-501). In this study, the nature of this character-word difference in lateralization was explored in a task in which stimuli were presented unilaterally to a visual field for recognition test. Four types of stimuli were used: Single character, single pseudo- or noncharacter, two-character word, and two-character pseudoword. Results show (a) no visual-field advantage for illegal characters and words, (b) a LVF-advantage effect for characters associated with a more prominent LVF than RVF character-superiority effect, (c) a RVF-advantage effect for words associated with a more prominent RVF than LVF word-superiority effect, and (d) these two visual-field effects for characters and words being not absolute, they occur only with a low rather than with a high recognition for their respective illegal counterparts. These results suggest that the character-word difference is due to a more efficient lexical interpretation of character stimuli in the right than in the left hemisphere and a more efficient lexical interpretation of word stimuli in the left than in the right hemisphere.  相似文献   

7.
Information about object-associated manipulations is lateralized to left parietal regions, while information about the visual form of tools is represented bilaterally in ventral occipito-temporal cortex. It is unknown how lateralization of motor-relevant information in left-hemisphere dorsal stream regions may affect the visual processing of manipulable objects. We used a lateralized masked priming paradigm to test for a right visual field (RVF) advantage in tool processing. Target stimuli were tools and animals, and briefly presented primes were identical to or scrambled versions of the targets. In Experiment 1, primes were presented either to the left or to the right of the centrally presented target, while in Experiment 2, primes were presented in one of eight locations arranged radially around the target. In both experiments, there was a RVF advantage in priming effects for tool but not for animal targets. Control experiments showed that participants were at chance for matching the identity of the lateralized primes in a picture?Cword matching experiment and also ruled out a general RVF speed-of-processing advantage for tool images. These results indicate that the overrepresentation of tool knowledge in the left hemisphere affects visual object recognition and suggests that interactions between the dorsal and ventral streams occurs during object categorization.  相似文献   

8.
语篇主题表征在大脑两半球的存贮   总被引:1,自引:0,他引:1  
使用半视野速示技术和启动—再认探测方法,采用包含两个句子的短语篇作为前行信息、通过主题启动、歧义词启动探测语段阅读时主题表征在大脑两半球的存贮情况,结果发现,无论是主题启动还是歧义词启动,左视野/右半脑和右视野/左半脑对语境相关的目标词反应时间都比不一致目标词更长,说明语段阅读后两半脑对主题表征都有存贮。  相似文献   

9.
Hemisphere dynamics in lexical access: automatic and controlled priming   总被引:10,自引:9,他引:1  
Hemisphere differences in lexical processing may be due to asymmetry in the organization of lexical information, in procedures used to access the lexicon, or both. Six lateralized lexical decision experiments employed various types of priming to distinguish among these possibilities. In three controlled (high probability) priming experiments, prime words could be used as lexical access clues. Larger priming was obtained for orthographically similar stimuli (BEAK-BEAR) when presented to the left visual field (LVF). Controlled priming based on phonological relatedness (JUICE-MOOSE) was equally effective in either visual field (VF). Semantic similarity (INCH-YARD) produced larger priming for right visual field (RVF) stimuli. These results suggest that the hemispheres may utilize different information to achieve lexical access. Spread of activation through the lexicon was measured in complementary automatic (low probability) priming experiments. Priming was restricted to LVF stimuli for orthographically similar words, while priming for phonologically related stimuli was only obtained in the RVF. Automatic semantic priming was present bilaterally, but was larger in the LVF. These results imply hemisphere differences in lexical organization, with orthographic and semantic relationships available to the right hemisphere, and phonological and semantic relations available to the left hemisphere. Support was obtained for hemisphere asymmetries in both lexical organization and directed lexical processing.  相似文献   

10.
Comparing visual field asymmetries for bilaterally presented words and corresponding line drawings, we found an RVF advantage for words and no visual field asymmetry for line drawings. We suggested that the RVF advantage previously obtained by Young, Bion, and Ellis (Brain and Language, 11, 54–65, 1980) for bilaterally presented line drawings may have resulted from a forced order of report procedure, noting that the RVF advantage was greater on trials on which subjects were forced to report in the nonpreferred right-to-left order. Young and Ellis (Brain and Language, 20, 166–171, 1983) attempt to discredit this claim and maintain their hypothesis that the RVF advantage for line drawings is attributable to better temporary storage of these stimuli by the left than the right hemisphere. In the present article, we present in greater detail our arguments for the effects of forced order of report on the perception of bilaterally presented stimuli and refute Young and Ellis's ibid. criticisms of this proposal.  相似文献   

11.
In this article we examine whether the distribution of function across the right and left cerebral hemispheres for lexical processing is influenced by the global context within which words are presented. A review of previously published studies indicates that the ubiquitous right visual field (RVF)/left hemisphere advantage for word recognition may be reduced or eliminated for nouns, content words, or high image words, but only when such items are presented along with verbs, function words, or low image words. However, paradoxically, when the former items are presented in more homogeneous contexts, the RVF advantage is uniformly observed. We propose that the processing efficiency of a hemisphere for a given stimulus depends on that item's relation to the other stimuli provided, that is, the global context. This was examined in a visual half-field experiment that varied whether high and low image nouns were presented in homogeneous (blocked lists) or heterogeneous (mixed lists) contexts. An unvarying RVF advantage was observed for high image words in homogeneous contexts, but this advantage was eliminated when the same items were presented in heterogeneous contexts. We suggest that stimulus heterogeneity maximizes reliance on differing, but complementary, computational biases across hemispheres. Hence, the extent to which the left and right hemispheres are recruited for the recognition of individual word types can vary dynamically with variation in the stimulus environment.  相似文献   

12.
A series of experiments using the lexical decision task was conducted in order to investigate the functional differences between the upper and lower visual fields (UVF, LoVF) in word recognition. Word-nonword discrimination was swifter and more accurate for word stimuli presented in the UVF. Changing the eccentricity did not affect the UVF advantage over the LoVF. UVF superiority over LoVF was found to be equivalent for both right and left visual hemifield (RVF, LVF). In general, presenting related word primes enhanced all visual field differences in a similar manner (UVF over LoVF and RVF over LVF). However, primes consisting of semantically constraining sentences enhanced the RVF advantage over the LVF, but did not affect the UVF and LoVF differentially. The argument is made that UVF superiority cannot be due to perceptual or attentional differences alone, but must also reflect top-down information flow.  相似文献   

13.
Right-handed participants respond more quickly and more accurately to written words presented in the right visual field (RVF) than in the left visual field (LVF). Previous attempts to identify the neural basis of the RVF advantage have had limited success. Experiment 1 was a behavioral study of lateralized word naming which established that the words later used in Experiment 2 showed a reliable RVF advantage which persisted over multiple repetitions. In Experiment 2, the same words were interleaved with scrambled words and presented in the LVF and RVF to right-handed participants seated in an MEG scanner. Participants read the real words silently and responded "pattern" covertly to the scrambled words. A beamformer analysis created statistical maps of changes in oscillatory power within the brain. Those whole-brain maps revealed activation of the reading network by both LVF and RVF words. Virtual electrode analyses used the same beamforming method to reconstruct the responses to real and scrambled words in three regions of interest in both hemispheres. The middle occipital gyri showed faster and stronger responses to contralateral than to ipsilateral stimuli, with evidence of asymmetric channeling of information into the left hemisphere. The left mid fusiform gyrus at the site of the 'visual word form area' responded more strongly to RVF than to LVF words. Activity in speech-motor cortex was lateralized to the left hemisphere, and stronger to RVF than LVF words, which is interpreted as representing the proximal cause of the RVF advantage for naming written words.  相似文献   

14.
Previous studies have reported an interaction between visual field (VF) and word length such that word recognition is affected more by length in the left VF (LVF) than in the right VF (RVF). A reanalysis showed that the previously reported effects of length were confounded with orthographic neighborhood size (N). In three experiments we manipulated length and N in lateralized lexical decision tasks. Results showed that length and VF interacted even with N controlled (Experiment 1); that N affected responses to words in the LVF but not the RVF (Experiment 2); and that when length and N were combined, length only affected performance in the LVF for words with few neighbors.  相似文献   

15.
Hemispheric asymmetry was examined for native English speakers identifying consonant-vowel-consonant (CVC) non-words presented in standard printed form, in standard handwritten cursive form or in handwritten cursive with the letters separated by small gaps. For all three conditions, fewer errors occurred when stimuli were presented to the right visual field/left hemisphere (RVF/LH) than to the left visual field/right hemisphere (LVF/RH) and qualitative error patterns indicated that the last letter was missed more often than the first letter on LVF/RH trials but not on RVF/LH trials. Despite this overall similarity, the RVF/LH advantage was smaller for both types of cursive stimuli than for printed stimuli. In addition, the difference between first-letter and last-letter errors was smaller for handwritten cursive than for printed text, especially on LVF/RH trials. These results suggest a greater contribution of the right hemisphere to the identification of handwritten cursive, which is likely related visual complexity and to qualitative differences in the processing of cursive versus print.  相似文献   

16.
Evidence for scanning with unilateral visual presentation of letters   总被引:1,自引:1,他引:0  
When letters and words are presented tachistoscopically, material from the right visual field (RVF) can be reported more accurately than that from the left visual field (LVF). The RVF superiority may reflect either left hemispheric dominance for language or directional scanning. Previous studies have deliberately focused on the cerebral asymmetry factor while "controlling" scanning and, thus, have cast some doubt on the potency of the scanning factor. Two experiments were conducted to show that scanning can induce a RVF superiority comparable to that often associated with cerebral asymmetry. The first experiment required bilingual subjects to report six English or six Hebrew letters, shown briefly in either the LVF or RVF, with order of report controlled. A RVF superiority found with English characters was matched by an equal but opposite LVF effect with Hebrew. In a second experiment, five English characters were shown briefly in either the LVF or RVF, and subjects had to identify a single character indicated by a post exposural cue. Using a spatial cue to by pass scanning, there were no field differences; with an ordinal position cue--a procedure thought to force scanning--there was a strong RVF superiority. The results show clearly that scanning can induce visual field differences.  相似文献   

17.
Three experiments measured order of processing for single faces presented to the left or right visual field (VF) using a same-different matching task. In contrast to earlier studies, the stimuli in the present experiments were carefully matched for overall similarity prior to the actual experiments. Experiments 1 and 2 showed that a significant top-to-bottom order of processing occurred for line drawings of unfamiliar faces but not for line drawings of familiar faces. Experiment 3 found evidence supporting top-to-bottom processing for unfamiliar photographic face stimuli. The photographic stimuli in Experiment 3 were matched more quickly when presented in the left VF (right hemisphere); however, this VF asymmetry was not related to previously reported differences in order of processing. It is suggested that under some conditions faces presented to the right hemisphere may be processed more like familiar faces than faces presented to the left hemisphere; however, this difference is not critical for the left VF (right hemisphere) superiority often found in face recognition tasks.  相似文献   

18.
In Chinese orthography, the most common character structure consists of a semantic radical on the left and a phonetic radical on the right (SP characters); the minority, opposite arrangement also exists (PS characters). Recent studies showed that SP character processing is more left hemisphere (LH) lateralized than PS character processing. Nevertheless, it remains unclear whether this is due to phonetic radical position or character type frequency. Through computational modeling with artificial lexicons, in which we implement a theory of hemispheric asymmetry in perception but do not assume phonological processing being LH lateralized, we show that the difference in character type frequency alone is sufficient to exhibit the effect that the dominant type has a stronger LH lateralization than the minority type. This effect is due to higher visual similarity among characters in the dominant type than the minority type, demonstrating the modulation of visual similarity of words on hemispheric lateralization.  相似文献   

19.
Four experiments were conducted to evaluate the hypothesis that different processes are involved in decisions about terminal and pre-terminal items in a sequential item recognition task. The impetus for the investigation was previous findings that the matching of terminal and pre-terminal items to simultaneously presented bilateral probes yielded a right visual field (RVF) and left visual field (LVF) advantage respectively.Experiments 1 and 2 demonstrated that the interaction between match type and visual field, generally attributed to hemispheric specialization, is restricted to decisions about terminal items, while the left visual field advantage found for pre-terminal items was dependent on a left-to-right scanning strategy. Experiments 3 and 4 provided further evidence that a serial search through the probe set determined responses to pre-terminal items by showing that the effect was dependent on a varied mapping between stimuli and targets. When target items could be identified without a serial search through the memory set, the left visual field advantage for pre-terminal items was abolished.The results confirm that distinct processing principles are involved in decisions about terminal and pre-terminal items in recognition memory. They suggest that the process responsible for decisions about pre-terminal items involves a habit-controlled scanning mechanism operating serially on spatially distributed information. The process responsible for decisions about terminal items may be based on either: (a) hemispheric principles, or (b) a link between the content of attention and spatially distributed expectations.  相似文献   

20.
When two targets are presented in a rapid serial visual presentation (RSVP), recognition of the second target (T2) is usually reduced when presented 150–500 ms after the first target, demonstrating an attentional blink (AB). Previous studies have shown a left visual-field (LVF) advantage in T2 recognition, when T2 was embedded in one of two streams, demanding top-down attention for its recognition. Here, we explored the impact of bottom-up saliency on spatial asymmetry in the AB. When T2 was spatially shifted outside from the RSVP, creating an abrupt onset of T2, right T2s showed a right visual-field (RVF) advantage. In lag-1 trials, right T2s were not only better recognized, but also showed a low T1-T2 order error rate. In contrast, recognized left T2s exhibited high order error rate. Without abrupt onset, symmetrical AB was found and order error rate was similarly low in both sides. Follow-up experiments showed that, while RVF advantage was related to bottom-up saliency, order errors were affected by T1 mask. The discrepancy between LVF and RVF advantage in the AB could be resolved in terms of two mechanisms of attentional gating: top-down attentional gating, which is biased towards LVF, and bottom-up attentional gating, which is biased towards RVF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号