首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When lateralized responses are made to the locations of vertically arrayed stimuli, two types of mapping effect have been reported: an overall up-right/down-left advantage and mapping preferences that vary with response position. According to Cho and Proctor's (2003) multiple asymmetric codes account, these orthogonal stimulus-response compatibility effects are due to the correspondence of stimulus polarity and response polarity, as determined by the positions relative to multiple frames of reference. The present study examined these two types of orthogonal compatibility for situations in which participants made left-right responses to the colours of a vertically arrayed stimulus set, and stimulus location was irrelevant. Although a significant orthogonal Simon effect was not evident when responding at a centred, neutral response position, the effect was modulated by response eccentricity (Experiment 2) and hand posture (Experiment 3). These effects are qualitatively similar to those obtained when stimulus location is task relevant. The results imply that, as Proctor and Cho's (2006) polarity correspondence principle suggests, the stimulus polarity code activates the response code of corresponding polarity even when stimulus location is irrelevant to the task.  相似文献   

2.
When up–down stimulus locations are mapped to left–right keypresses, an overall advantage for the up–right/down–left mapping is often obtained that varies as a function of response eccentricity. This orthogonal stimulus–response compatibility (SRC) effect also occurs when stimulus location is irrelevant, a phenomenon called the orthogonal Simon effect, and has been attributed to correspondence of stimulus and response code polarities. The Simon effect for horizontal stimulus–response (S–R) arrangements has been shown to be affected by short-term S–R associations established through the mapping used for a prior SRC task in which stimulus location was relevant. We examined whether such associations also transfer between orthogonal SRC and Simon tasks and whether correspondence of code polarities continues to contribute to performance in the Simon task. In Experiment 1, the orthogonal Simon effect was larger after practising with an up–right/down–left mapping of visual stimuli to responses than with the alternative mapping, for which the orthogonal Simon effect tended to reverse. Experiment 2 showed similar results when practice was with high (up) and low (down) pitch tones, though the influence of practice mapping was not as large as that in Experiment 1, implying that the short-term S–R associations acquired in practice are at least in part not modality specific. In Experiment 3, response eccentricity and practice mapping were shown to have separate influences on the orthogonal Simon effect, as expected if both code polarity and acquired S–R associations contribute to performance.  相似文献   

3.
When up-down stimulus locations are mapped to left-right keypresses, an overall advantage for the up-right/down-left mapping is often obtained that varies as a function of response eccentricity. This orthogonal stimulus-response compatibility (SRC) effect also occurs when stimulus location is irrelevant, a phenomenon called the orthogonal Simon effect, and has been attributed to correspondence of stimulus and response code polarities. The Simon effect for horizontal stimulus-response (S-R) arrangements has been shown to be affected by short-term S-R associations established through the mapping used for a prior SRC task in which stimulus location was relevant. We examined whether such associations also transfer between orthogonal SRC and Simon tasks and whether correspondence of code polarities continues to contribute to performance in the Simon task. In Experiment 1, the orthogonal Simon effect was larger after practising with an up-right/down-left mapping of visual stimuli to responses than with the alternative mapping, for which the orthogonal Simon effect tended to reverse. Experiment 2 showed similar results when practice was with high (up) and low (down) pitch tones, though the influence of practice mapping was not as large as that in Experiment 1, implying that the short-term S-R associations acquired in practice are at least in part not modality specific. In Experiment 3, response eccentricity and practice mapping were shown to have separate influences on the orthogonal Simon effect, as expected if both code polarity and acquired S-R associations contribute to performance.  相似文献   

4.
The above-right/below-left mapping advantage with vertical stimuli and horizontal responses is known as the orthogonal stimulus–response compatibility (SRC) effect. We investigated whether the orthogonal SRC effect emerges with irrelevant stimulus dimensions. In Experiment 1, participants responded with a right or left key press to the colour of the stimulus presented above or below the fixation. We observed an above-right/below-left advantage (orthogonal Simon effect). In Experiment 2, we manipulated the polarity in the response dimension by varying the horizontal location of the response set. The orthogonal Simon effect decreased and even reversed as the left response code became more positive. This result provides evidence for the automatic activation of the positive and negative response codes by the corresponding positive and negative stimulus codes. These findings extended the orthogonal SRC effect based on coding asymmetry to an irrelevant stimulus dimension.  相似文献   

5.
The above-right/below-left mapping advantage with vertical stimuli and horizontal responses is known as the orthogonal stimulus-response compatibility (SRC) effect. We investigated whether the orthogonal SRC effect emerges with irrelevant stimulus dimensions. In Experiment 1, participants responded with a right or left key press to the colour of the stimulus presented above or below the fixation. We observed an above-right/below-left advantage (orthogonal Simon effect). In Experiment 2, we manipulated the polarity in the response dimension by varying the horizontal location of the response set. The orthogonal Simon effect decreased and even reversed as the left response code became more positive. This result provides evidence for the automatic activation of the positive and negative response codes by the corresponding positive and negative stimulus codes. These findings extended the orthogonal SRC effect based on coding asymmetry to an irrelevant stimulus dimension.  相似文献   

6.
When up-down stimuli are mapped to left-right responses, an up-right/down-left mapping advantage is found that is modified by response eccentricity and hand posture. These effects can be attributed to correspondence of asymmetric stimulus and response codes formed relative to multiple reference frames. We examined the influence of stimulus-set location on these orthogonal stimulus-response compatibility (SRC) effects. In Experiment 1, the stimulus set appeared in the upper or lower display positions. A spatial code for stimulus-set location was formed, producing Simon-type response eccentricity and hand posture effects, but this code had no influence on the coding of the relevant stimuli. In Experiment 2, the stimulus set appeared in the left, center, or right positions relative to the response location, which also varied, to dissociate the effects of response location, relative to the stimulus display and body midline. The former factor influenced the orthogonal SRC effect for both unimanual switch movements and bimanual keypresses, and the latter factor influenced the effect for only unimanual switch movements. Stimulus-set location causes orthogonal Simon-type effects when varied along the stimulus dimension and provides a referent for response coding when varied along the response dimension.  相似文献   

7.
When up-down stimuli are mapped to left-right responses, an up-right/down-left mapping advantage is found that is modified by response eccentricity and hand posture. These effects can be attributed to correspondence of asymmetric stimulus and response codes formed relative to multiple reference frames. We examined the influence of stimulus-set location on these orthogonal stimulus-response compatibility (SRC) effects. In Experiment 1, the stimulus set appeared in the upper or lower display positions. A spatial code for stimulus-set location was formed, producing Simon-type response eccentricity and hand posture effects, but this code had no influence on the coding of the relevant stimuli. In Experiment 2, the stimulus set appeared in the left, center, or right positions relative to the response location, which also varied, to dissociate the effects of response location, relative to the stimulus display and body midline. The former factor influenced the orthogonal SRC effect for both unimanual switch movements and bimanual keypresses, and the latter factor influenced the effect for only unimanual switch movements. Stimulus-set location causes orthogonal Simon-type effects when varied along the stimulus dimension and provides a referent for response coding when varied along the response dimension.  相似文献   

8.
Responses are faster with spatial S-R correspondence than with noncorrespondence (spatial compatibility effect), even if stimulus location is irrelevant (Simon effect). In two experiments, we sought to determine whether stimuli located above and below a fixation point are coded as left and right (and thus affect the selection of left and right responses) if the visual context suggests such a coding. So, stimuli appeared on the left or right eye of a face’s image that was tilted by 90° to one side or the other (Experiment 1) or varied between upright and 45° or 90° tilting (Experiment 2). Whether stimulus location was relevant (Experiment 1) or not (Experiment 2), responses were faster with correspondence of (face-based) stimulus location and (egocentrically defined) response location, even if stimulus and response locations varied on physically orthogonal dimensions. This suggests that object-based spatial stimulus codes are formed automatically and thus influence the speed of response selection.  相似文献   

9.
Two types of stimulus-response compatibility (SRC) effect occur with orthogonal stimulus and response sets, an overall up-right/down-left advantage and mapping preferences that vary with response position. Researchers agree that the former type is due to asymmetric coding of the stimulus and response alternatives, but disagree as to whether the latter type requires a different explanation in terms of the properties of the motor system. This issue is examined in three experiments. The location of the stimulus set influenced orthogonal SRC when it varied along the same dimension as the responses (Experiments 1 and 2), with the pattern predicted by the hypothesis that the stimulus set provides a referent relative to which response position is coded. The effect of stimulus-set location on orthogonal SRC was independent of the stimulus onset asynchrony (SOA) for a marker that indicated stimulus-set side and the imperative stimulus. In contrast, a spatial correspondence effect for the irrelevant stimulus-set location and response was a decreasing function of SOA. Experiment 3 showed that the orthogonal SRC effect was determined by response position relative to the stimulus-set location and not the body midline. The results support the view that both types of orthogonal SRC effects are due to asymmetric coding of the stimuli and responses.  相似文献   

10.
When left and right keypresses are made to stimuli in left and right locations, and stimulus location is irrelevant to the task, responses are typically faster when stimulus location corresponds with response location than when it does not (the Simon effect). This effect reverses when the relevant stimulus-response mapping is incompatible, with responses being slower when stimulus and response locations correspond (the Hedge and Marsh reversal). Simon et al. (Acta Psychol. 47 (1981) 63) reported an exception to the Hedge and Marsh reversal for a situation in which the relevant stimulus dimension was the color of a centered visual stimulus and the irrelevant location information was left or right tone location. In contrast, similar experiments have found a reversal of the Simon effect for tone location when relevant visual locations were mapped incompatibly to responses. We conducted four experiments to investigate this discrepancy. Both results were replicated. With an incompatible mapping, irrelevant tone location showed a small reverse Simon effect when the relevant visual dimension was physical location but not when the color of a centered stimulus or the direction in which an arrow pointed conveyed the visual location information. The reversal occurred in a more standard Hedge and Marsh task in which the irrelevant dimension was location of the colored stimulus, but only when the response keys were visibly labeled. Several of the results suggest that display-control arrangement correspondence is the primary cause of the Hedge and Marsh reversal, with logical recoding playing only a secondary role.  相似文献   

11.
The Simon effect refers to faster responding when an irrelevant stimulus location corresponds with the response to a relevant stimulus attribute than when it does not. We investigated whether a memory-based Simon-like effect would occur when the irrelevant spatial attribute was associated with the stimulus during a prior task. In a first task, an association between colour and location was formed by requiring participants to count the occurrences of two colour stimuli, each of which was always presented in a left or right location. In a second task, the colour stimuli were presented centrally and mapped to left and right keypresses, with the mapping being inconsistent or consistent with the prior colour-location associations. A Simon-like effect was evident at the start of the second task, with performance being better when the established colour–position associations were consistent with the colour–response mapping than when they were not. This result indicates that stimulus–stimulus short-term memory associations formed during the first task transferred to the second task. For the remainder of the second task, the data showed a more conservative speed–accuracy criterion for the inconsistent condition than for the consistent condition, though a processing efficiency measure suggested that the prior stimulus–stimulus short-term associations may also continue to directly influence performance. Results suggest that simple declarative knowledge, as represented by stimulus–stimulus STM links, exerts less persistent transfer effects than procedural knowledge as provided by stimulus–response STM links.  相似文献   

12.
In two-choice tasks for which stimuli and responses vary along orthogonal dimensions, one stimulus-response mapping typically yields better performance than another. For unimanual movement responses, the hand used to respond, hand posture (prone or supine), and response eccentricity influence this orthogonal stimulus-response compatibility (SRC) effect. All accounts of these phenomena attribute them to response-related processes. Two experiments examined whether manipulation of stimulus-set position along the dimension on which the stimuli varied influences orthogonal SRC in a manner similar to the way that response location does. The experiments differed in whether the stimulus dimension was vertical and the response dimension horizontal, or vice versa. In both experiments, an advantage of mapping up with right and down with left was evident for several response modes, and stimulus-set position had no influence on the orthogonal SRC effect. The lack of effect of stimulus-set position is in agreement with the emphasis that present accounts place on response-related processes. We favor a multiple asymmetric codes account, for which the present findings imply that the polarity of stimulus codes does not vary across task contexts although the polarity of response codes does.  相似文献   

13.
Four experiments examined transfer of noncorresponding spatial stimulus-response associations to an auditory Simon task for which stimulus location was irrelevant. Experiment 1 established that, for a horizontal auditory Simon task, transfer of spatial associations occurs after 300 trials of practice with an incompatible mapping of auditory stimuli to keypress responses. Experiments 2-4 examined transfer effects within the auditory modality when the stimuli and responses were varied along vertical and horizontal dimensions. Transfer occurred when the stimuli and responses were arrayed along the same dimension in practice and transfer but not when they were arrayed along orthogonal dimensions. These findings indicate that prior task-defined associations have less influence on the auditory Simon effect than on the visual Simon effect, possibly because of the stronger tendency for an auditory stimulus to activate its corresponding response.  相似文献   

14.
This research was concerned with separating the effects of three varieties of S-R compatibility: reactions toward the stimulus source, compatibility of S-R mapping, and display-control arrangement correspondence. In experiments 1 and 2, subjects pressed a green or red key located on the left and right in response to the onset of a green or red stimulus presented in a left or right window. Half of the subjects pressed the key which corresponded to the color of the stimulus (compatible S-R mapping) while the other half pressed the alternate colored key (incompatible S-R mapping). In the compatible mapping task, reactions were faster when location of stimulus and response corresponded than when they did not while, in the incompatible task, reactions were faster when location of stimulus and response did not correspond. This apparent reversal in the tendency to react toward the stimulus source was attributed to display- control arrangement correspondence rather than to logical recoding of the directional cue. Experiment 3 established that faster reactions toward the stimulus source occured only under compatible mapping instructions.  相似文献   

15.
 Simon, Hinrichs, and Craft found that when subjects responded to a tone in the left or right ear with a left or right keypress, both ear-response-location correspondence and ear-hand correspondence affected reaction time. This outcome is in contrast to results obtained for auditory and visual Simon tasks (i.e., tasks in which stimulus location is irrelevant) as well as results obtained in visual stimulus-response (S-R) compatibility studies, which show only an effect of spatial S-R correspondence. Experiment 1 was a replication of Simon et al.'s experiment in which spatial mapping and hand placement (uncrossed, crossed) were varied. The results were inconsistent with those of Simon et al., showing no ear-hand compatibility effect. Experiment 2 was a second replication with an additional condition examined in which the stimuli were visual locations. The results showed no contribution of stimulus-hand correspondence for either auditory or visual stimuli. Experiment 3 was a replication of another experiment by Simon et al. in which tone pitch was relevant and tone location irrelevant. Like Simon et al.'s data, our results showed no indication that stimulus-hand correspondence is a significant factor. Overall, our results imply that regardless of whether tone location is relevant or irrelevant, ear-response-location correspondence is the only factor that contributes to S-R compatibility in auditory two-choice reaction tasks. Received: 15 March 1999 / Accepted: 8 June 1999  相似文献   

16.
For two stimulus locations mapped to two keypresses, reaction time is shorter when the mapping is compatible than when it is not (the stimulus–response compatibility, SRC, effect). A similar result, called the Simon effect, occurs when stimulus location is irrelevant, and colour is relevant. When compatibly mapped trials are intermixed with incompatibly mapped trials or Simon task trials, the compatibility effect is eliminated, and the Simon effect is influenced by the location mapping. In five experiments, we examined whether similar mixing effects occur when the two spatial mappings or location-relevant and location-irrelevant tasks use distinct keypresses on the left and right hands. Mixing had considerably less influence on the SRC and Simon effects than it does when the intermixed trial types or tasks share the same responses, even though response time was lengthened to a similar extent. Mixing two tasks for which stimulus location was irrelevant yielded no within-task Simon effect, but the effect was also absent when four stimuli were assigned to two responses on a single hand. The relative lack of influence of mixing on the SRC and Simon effects when the tasks have unique responses implies that suppression of direct activation of the corresponding response occurs primarily when the tasks share responses.  相似文献   

17.
This study addresses the dependence of compatibility effects on responding hand with horizontally oriented stimuli and vertically oriented responses (H-V effect) and with vertically oriented stimuli and horizontally oriented responses (V-H effect) reported by Bauer and Miller (1982). Experiment 1 replicated the H-V effect. In Experiment 2, the subject was instructed to respond with the hand in line with the response keys. That eliminated the H-V effect. In Experiment 3, the response board was placed to the left or right side of the subject, yielding a considerably reduced H-V effect and a novel compatibility effect dependent on board location. In Experiment 4, the V-H effect was produced when the subject was required to respond with the hand in line with the response keys. With the hand rotated through 90 in Experiment 5, the V-H effect was eliminated, and a main effect of mapping was observed. The results challenge Bauer and Miller's movement-preference hypothesis and support a referential-coding hypothesis proposed by the author. This assumes that response positions are coded in reference to hand posture, so that physically orthogonal stimulus and response dimensions can overlap with respect to their mental representations. The applicability of this hypothesis to other compatibility effects is demonstrated, and its significance for compatibility theories is briefly discussed.  相似文献   

18.
A non-spatial variant of the Simon effect for the stimulus-response (S-R) feature of duration is reported. In Experiment 1 subjects were required to press a single response key either briefly or longer in response to the colour of a visual stimulus that varied in its presentation duration. Short keypresses were initiated faster with short than with long stimulus duration whereas the inverse was observed with long keypresses. In Experiment 2 subjects were required to press a left or right key (according to stimulus form) either briefly or longer (according to stimulus colour). The stimuli concurrently varied in their location (left or right) and duration (short or long), which were both task irrelevant. Approximately additive correspondence effects for S-R location and S-R duration were observed. To summarize, the results suggest that the irrelevant stimulus features of location and duration are processed automatically and prime corresponding responses in an independent manner.  相似文献   

19.
Unimanual left-right responses to up-down stimuli show a stimulus-response compatibility (SRC) effect for which the preferred mapping varies as a function of response eccentricity. Responses made in the right hemispace and, to a lesser extent, at a midline position, are faster with the up-right/down-left mapping than with the up-left/down-right mapping, but responses made in the left hemispace are faster with the up-left/down-right mapping. Also, for responses at the midline position, the preferred mapping switches when the hand is placed in a supine posture instead of the more usual prone posture. The response eccentricity effect can be explained in terms of correspondence of asymmetrically coded stimulus and response features, but it is not obvious whether the hand posture effect can be explained in a similar manner. The present study tested the implications of a hypothesis that the body of the hand provides a frame of reference with respect to which the response switch is coded as left or right. As was predicted by this hand referent hypothesis, Experiment 1 showed that the influence of hand posture (prone and supine) on orthogonal SRC was additive with that of response location. In Experiment 2, the location of the switch relative to the hand was varied by having subjects use either a normal grip in which the switch was held between the thumb and the index finger or a grip in which it was held between the little and the ring fingers. The magnitudes of the mapping preferences varied as a function of the grip and hand posture in a manner consistent with the hand referent hypothesis.  相似文献   

20.
The Simon effect refers to the observation that responses to a relevant stimulus dimension are faster and more accurate when the stimulus and response spatially correspond than when they do not, even though stimulus position is irrelevant. Recent findings have suggested that the Simon effect can be strongly modulated by prior practice with a spatially incompatible mapping and by correspondence sequence. Although practice is thought to influence conditional stimulus —response (S-R) processing, leaving response priming through the unconditional route unaffected, sequential effects are thought to represent trial-by-trial adaptations that selectively involve unconditional S —R processing. In the present study, we tested this assumption by assessing the effects of correspondence sequence both when the Simon task alone was performed and when it was preceded by a spatial compatibility task with either incompatible (Experiments 1-2) or compatible (Experiment 2) instructions. The observation that practice and correspondence sequence co-occur and exert additive effects strongly demonstrates that the two factors affect different processing routes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号