首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kinematic (relative phase error), metabolic (oxygen consumption, heart rate) and attentional (baseline and cycling reaction times) variables were measured while participants practised a high energy-demanding, intrinsically unstable 90 degrees relative phase coordination pattern on independent bicycle ergometers. The variables were found to be strongly inter-correlated, suggesting a link between emerging performance stability with practice and minimal metabolic and attentional cost. The effects of practice of 90 degrees relative phase coordination on the performance of in-phase (0 degrees-phase) and antiphase (180 degrees-phase) coordination were investigated by measuring the relative phase attractor layouts and recording the metabolic and attentional cost of the three coordination patterns before and after practice. The attentional variables did not differ significantly between coordination patterns and did not change with practice. Before practice, the coordination performance was most accurate and stable for in-phase cycling, with antiphase next and 90 degrees-phase the poorest. However, metabolic cost was lower for antiphase than either in-phase or 90 degrees-phase cycling, and the pre-practice attractor layout deviated from that predicted on the basis of dynamic stability as an attractor state, revealing an attraction to antiphase cycling. After practice of 90 degrees-phase cycling, in-phase cycling remained the most accurate and stable, with 90 degrees-phase next and antiphase the poorest, but antiphase retained the lowest metabolic energy cost. The attractor layout had changed, with new attractors formed at the practised 90 degrees-phase pattern and its symmetrical partner of 270 degrees-phase. Considering both the pre- and post-practice results, attractors were formed at either a low metabolic energy cost but less stable (antiphase) pattern or at a more stable but higher metabolic energy cost (90 degrees-phase) pattern, but in neither case at the most stable and accurate (in-phase) pattern. The results suggest that energetic factors affect coordination dynamics and that coordination modes lower in metabolic energy expenditure may compete with dynamically stable modes.  相似文献   

2.
According to a dynamic theory of learning, how a new memory is formed depends on the stability of the nearest preexisting memories. To predict retention after practice, the authors analyzed how 15 participants memorized 2 bimanual coordination patterns (45 degrees or 135 degrees relative phase). The authors assessed (a) how participants memorized the required patterns with learning and (b) how the associated memory layout evolved. Results showed that a practiced 45 degrees pattern near a very stable memory (0 degrees ) persisted, whereas a 135 degrees pattern near a less stable memory (180 degrees ) was forgotten. Those findings corroborate the proposition that retention of coordination patterns depends on the stability of the extant motor memories. The authors discuss that proposal in terms of the coevolution of accuracy and stability with learning to predict persistence of required or false memories.  相似文献   

3.
Attentional cost incurred for generating handwritten graphic patterns was investigated using a classic dual-task procedure, in which a concurrent reaction time (RT) task was used as an index of the attentional cost incurred by the primary graphic task. Eight right-handed adults had to trace graphic patterns, characterized by a 0°, 45°, 90°, 135° or 180° relative phase and corresponding to shapes ranging from lines to ellipses to circles, while responding by a key press as fast as possible to an auditory signal. The results evidenced a strong and significant correlation between the stability of the produced pattern and the associated attentional cost. The amplitude of the minor and major axes of the produced ellipsoids decreased with the increase of movement frequency, as expected by nonlinear models of oscillatory pattern generation. These findings pave the way to the study for the (coordinative) processes for letter (mal)formation in cursive handwriting.  相似文献   

4.
This study addressed the issue of intentional stabilization of between-persons coordination patterns (in-phase/isodirectional and anti-phase/non-isodirectional) and the attentional cost incurred by the nervous system in maintaining and further stabilizing these coordination patterns. Five pairs of participants performed in-phase and anti-phase interpersonal coordination patterns in dual-task conditions (coordination+RT task). Results showed that: (1) isodirectional pattern (in-phase) was more stable than non-isodirectional pattern (anti-phase), (2) both iso- and non-isodirectional pattern were stabilized intentionally, (3) RT was lower for the isodirectional pattern (i.e., the most stable), and (4) attentional manipulation led to a trade-off between pattern stability and RT performance. These results suggest that performing between-persons coordination patterns incurs a central cost that depends on the coupling strength between the limbs. These findings are consistent with the previous studies in intrapersonal coordination.  相似文献   

5.
Many studies have shown that rhythmic interlimb coordination involves perception of the coupled limb movements, and different sensory modalities can be used. Using visual displays to inform the coupled bimanual movement, novel bimanual coordination patterns can be learned with practice. A recent study showed that similar learning occurred without vision when a coach provided manual guidance during practice. The information provided via the two different modalities may be same (amodal) or different (modality specific). If it is different, then learning with both is a dual task, and one source of information might be used in preference to the other in performing the task when both are available. In the current study, participants learned a novel 90° bimanual coordination pattern without or with visual information in addition to kinesthesis. In posttest, all participants were tested without and with visual information in addition to kinesthesis. When tested with visual information, all participants exhibited performance that was significantly improved by practice. When tested without visual information, participants who practiced using only kinesthetic information showed improvement, but those who practiced with visual information in addition showed remarkably less improvement. The results indicate that (1) the information is not amodal, (2) use of a single type of information was preferred, and (3) the preferred information was visual. We also hypothesized that older participants might be more likely to acquire dual task performance given their greater experience of the two sensory modes in combination, but results were replicated with both 20- and 50-year-olds.  相似文献   

6.
This paper examines the informational activity devoted by the CNS to couple oscillating limbs in order to sustain and stabilize bimanual coordination patterns. Through a double-task paradigm associating a bimanual coordination task and a reaction time (RT) task, we investigated the relation between the stability of preferred bimanual coordination patterns and the central cost expended by the CNS for their stabilization. Ten participants performed in-phase and anti-phase coordination patterns in a dual task condition (coordination + RT) at several frequencies (0.5, 0.75, 1.0, 1.5, and 2.0 Hz), thereby decreasing the stability of the bimanual patterns. Results showed a U-shaped evolution of pattern stability and attentional cost, as a function of oscillation frequency, exhibiting a minimum value at the same frequency. These findings indicate that central cost and pattern stability covary and may share common, high order dynamics. Moreover, the attentional focus given to the bimanual coordination and the RT task was also manipulated by requiring either shared attention or priority to the coordination task. Such a manipulation led to a tradeoff between pattern stability and RT performance: The more stable the pattern, the more costly it is to stabilize. This suggests that stabilizing a coordination pattern incurs a central cost that depends on its intrinsic stability. Conceptual consequences of these results for understanding the relationship between attention and coordination are drawn, and the mechanisms putatively at work in dual tasks are discussed.  相似文献   

7.
During bimanual movements, two relatively stable "inherent" patterns of coordination (in-phase and anti-phase) are displayed (e.g., Kelso, Am. J. Physiol. 246 (1984) R1000). Recent research has shown that new patterns of coordination can be learned. For example, following practice a 90 degrees out-of-phase pattern can emerge as an additional, relatively stable, state (e.g., Zanone & Kelso, J. Exp. Psychol.: Human Performance and Perception 18 (1992) 403). On this basis, it has been concluded that practice leads to the evolution and stabilisation of the newly learned pattern and that this process of learning changes the entire attractor layout of the dynamic system. A general feature of such research has been to observe the changes of the targeted pattern's stability characteristics during training at a single movement frequency. The present study was designed to examine how practice affects the maintenance of a coordinated pattern as the movement frequency is scaled. Eleven volunteers were asked to perform a bimanual forearm pronation-supination task. Time to transition onset was used as an index of the subjects' ability to maintain two symmetrically opposite coordinated patterns (target task - 90 degrees out-of-phase - transfer task - 270 degrees out-of-phase). Their ability to maintain the target task and the transfer task were examined again after five practice sessions each consisting of 15 trials of only the 90 degrees out-of-phase pattern. Concurrent performance feedback (a Lissajous figure) was available to the participants during each practice trial. A comparison of the time to transition onset showed that the target task was more stable after practice (p=0.025). These changes were still observed one week (p=0.05) and two months (p=0.075) after the practice period. Changes in the stability of the transfer task were not observed until two months after practice (p=0.025). Notably, following practice, transitions from the 90 degrees pattern were generally to the anti-phase (180 degrees ) pattern, whereas, transitions from the 270 degrees pattern were to the 90 degrees pattern. These results suggest that practice does improve the stability of a 90 degrees pattern, and that such improvements are transferable to the performance of the unpractised 270 degrees pattern. In addition, the anti-phase pattern remained more stable than the practised 90 degrees pattern throughout.  相似文献   

8.
The present research examined two variables regarding the acquisition of a new bimanual coordination pattern: the role of previous experience and the nature of augmented feedback. Two groups of participants acquired a new coordination pattern (135 degrees relative phase) following two sessions of practice of another novel pattern (90 degrees relative phase). Transfer of learning in these groups was compared to two groups that had not previously learned a new pattern, but were nevertheless influenced by coordination patterns that are intrinsic to the task of bimanual relative timing (in-phase, 0 degrees, and anti-phase, 180 degrees). The findings revealed that new learning overshadowed the influence of the intrinsic patterns. Learning was also greatly affected by augmented feedback: dynamic, on-line pursuit tracking information was more effective in transfer than static, terminal feedback. Implications of these findings regarding theoretical constructs in motor learning are discussed.  相似文献   

9.
The authors addressed the hypothesis that economy in motor coordination is a learning phenomenon realized by both reduced energy cost for a given workload and more external work at the same prepractice metabolic and attentional energy expenditure. "Self-optimization" of movement parameters has been proposed to reflect learned motor adaptations that minimize energy costs. Twelve men aged 22.3 ± 3.9 years practiced a 90° relative phase, upper limb, independent ergometer cycling task at 60 rpm, followed by a transfer test of unpracticed (45 and 75 rpm) and selfpaced cadences. Performance in all conditions was initially unstable, inaccurate, and relatively high in both metabolic and attentional energy costs. With practice, coordinative stability increased, more work was performed for the same metabolic and attentional costs, and the same work was done at a reduced energy cost. Selfpaced cycling was initially below the metabolically optimal, but following practice at 60 rpm was closer to optimal cadence. Given the many behavioral options of the motor system in meeting a variety of everyday movement task goals, optimal metabolic and attentional energy criteria may provide a solution to the problem of selecting the most adaptive coordination and control parameters.  相似文献   

10.
The authors examined the learning function of a multiple biomechanical degrees of freedom coordination task. Four adult participants practiced the pedalo locomotion task for 350 trials over 7 days. On the basis of the Cauchy theorem, the authors applied a movement pattern difference score that provides a measure of convergence to a fixed point as the criterion for quantifying learning. The findings showed a significant reduction of the movement pattern difference score over practice. Neither an exponential (0.11) nor a power law (0.10) function accommodated a large percentage of the variance of the pattern difference measure on individual learning functions, but the respective fits were higher, although not different, for movement time (.57, .55). Principal components analysis showed a decrease of components over practice; the analysis also showed that 3-5 components were required to accommodate 90% of the variance of the whole-body motion at the end of the final practice session. Those findings on the learning functions for movement and outcome scores are discussed in relation to the redundancy of the biomechanical system in moving to a dynamical stable fixed point in this task.  相似文献   

11.
The authors investigated metabolic and attentional energy costs as participants (N = 6) practiced in-phase, antiphase, and 90 degrees -phase cycling (order counterbalanced) on independent bicycle ergometers, with resistance (40 W/ergometer) and frequency (40 rpm) held constant. Coordination stabilized and became more accurate for all 3 cycling modes, as shown by measures of relative phase, but that collective variable could not account for other relevant attributes of the multifaceted motor behavior observed across the 3 coordination modes. In-phase and antiphase cycling were similar in stability and accuracy, but antiphase had the lowest metabolic and attentional energy costs. Because both homologous muscle action and perceptually symmetrical oscillations coincided in the in-phase mode, the absence of predominance of the inphase pattern showed that neither of those musculoskeletal and perceptual factors exclusively determined the strongest attractor of the coordination dynamics. Both metabolic and attentional costs declined with practice, consistent with the hypothesis that adaptive motor behavior is guided by sensory information concerning the energy demands of the task. Attentional cost was influenced not only by the information-processing demands of kinematic stability but also by the metabolic energy demands. Metabolic energy cost appeared to be the crucial determinant of the preferred solution for this coordination task.  相似文献   

12.
The authors addressed the hypothesis that economy in motor coordination is a learning phenomenon realized by both reduced energy cost for a given workload and more external work at the same prepractice metabolic and attentional energy expenditure. "Self-optimization" of movement parameters has been proposed to reflect learned motor adaptations that minimize energy costs. Twelve men aged 22.3 -/+ 3.9 years practiced a 90 degrees relative phase, upper limb, independent ergometer cycling task at 60 rpm, followed by a transfer test of unpracticed (45 and 75 rpm) and self-paced cadences. Performance in all conditions was initially unstable, inaccurate, and relatively high in both metabolic and attentional energy costs. With practice, coordinative stability increased, more work was performed for the same metabolic and attentional costs, and the same work was done at a reduced energy cost. Self-paced cycling was initially below the metabolically optimal, but following practice at 60 rpm was closer to optimal cadence. Given the many behavioral options of the motor system in meeting a variety of everyday movement task goals, optimal metabolic and attentional energy criteria may provide a solution to the problem of selecting the most adaptive coordination and control parameters.  相似文献   

13.
This study aimed to examine the attentional demands of coordinating movement patterns across limbs. Eighteen participants performed a circle drawing task involving in-phase and anti-phase coordination modes under homologous, contralateral and ipsilateral limb combinations. Results indicated that: (a) attentional focus further stabilised coordination patterns with a cost at the central level; (b) there was an inverse relationship between stability and probe reaction time (RT) for all coordination patterns, that is the stronger the coupling between the limbs the lower the central cost. Overall, the results support previous research suggesting that attention plays an important role in sustaining coordination pattern stability and that the co-variation between coordination stability and central cost can also be extended to coordination across limbs.  相似文献   

14.
The purposes of the research reported here were (a) to examine changes in relative phase during the acquisition of a new coordination pattern and (b) to determine the effect of learning this pattern on the ability to perform other coordination patterns. Ten subjects practiced an upper limb coordination task that required a 90° phase offset and different amplitudes for each arm. A gross approximation of the mean relative phase for the intended coordination pattern occurred quickly, but the attainment of stability occurred much more gradually. These results were accompanied by changes in pattern stability across practice and on various transfer tests. Learning of the new coordination pattern also affected the stability of the anti-phase mode, but this effect was only temporary.  相似文献   

15.
This study aimed to examine the effects of directing attention to the spatial dimension of the circle-drawing task on interlimb coordination patterns across limbs. Eighteen participants performed a circle-drawing task involving in-phase and antiphase coordination modes under upper limb, contralateral and ipsilateral limb combinations. Results indicated that (a) coordination pattern stability co-varied with central cost when attentional focus was directed to the spatial dimensions of the interlimb circle-drawing task; (b) attentional focus on the spatial components modified the inherent performance asymmetries between the limbs; (c) finally, attention to the spatial components of the interlimb circle-drawing task modulated movement trajectories and at the same time the stability of temporal coordination.  相似文献   

16.
The purposes of the research reported here were (a) to examine changes in relative phase during the acquisition of a new coordination pattern and (b) to determine the effect of learning this pattern on the ability to perform other coordination patterns. Ten subjects practiced an upper limb coordination task that required a 90 degrees phase offset and different amplitudes for each arm. A gross approximation of the mean relative phase for the intended coordination pattern occurred quickly, but the attainment of stability occurred much more gradually. These results were accompanied by changes in pattern stability across practice and on various transfer tests. Learning of the new coordination pattern also affected the stability of the antiphase mode, but this effect was only temporary.  相似文献   

17.
《人类行为》2013,26(4):367-380
Attentional advice entails providing information to trainees about the process or strategy they could use to optimize learning during practice. The effects of providing attentional advice before practicing the task on immediate, delayed, and transfer performances were examined. One hundred-sixteen participants engaged in procedural product assembly tasks (i.e., building LegoÓ models) with supply management duties. Those who received attentional advice made significantly higher profits than those not receiving advice across all performance intervals. Benefits of attentional advice to facilitate practice are discussed.  相似文献   

18.
The role of intrinsic and extrinsic information feedback in learning a new bimanual coordination pattern was investigated. The pattern required continuous flexion-extension movements of the upper limbs with a 90 ° phase offset. Separate groups practiced the task under one of the following visual feedback conditions: (a) blindfolded (reduced FB group), (b) with normal vision (normal FB group), or (c) with concurrent relative motion information (enhanced FB group). All groups were subjected to three different transfer test conditions at regular intervals during practice. These tests included reduced, normal vision, and enhanced vision conditions. Experiment 1 showed that the group receiving augmented information feedback about its relative motions in real-time produced the required coordination pattern more successfully than the remaining two groups, irrespective of the transfer conditions under which performance was evaluated. Experiment 2 replicated and extended the superiority of the enhanced feedback group during acquisition and retention. Experiment 3 demonstrated that successful transfer to various transfer test conditions was not a result of test-trial effects. Overall, the data suggest that the conditions that optimized performance of the coordination pattern during acquisition also optimized transfer performance.  相似文献   

19.
The purpose of this study was to investigate the effects of aging and the role of augmented visual information in the acquisition of a new bimanual coordination pattern, namely a 90° relative phase pattern. In a pilot study, younger and older adults received augmented visual feedback in the form of a real-time orthogonal display of both limb movements after every fifth trial. Younger adults acquired this task over three days of practice and retained the task well over periods of one week and one month of no practice while the older adults showed no improvement at all on the task. It was hypothesized that the amount of augmented information was not sufficient for the older adults to overcome the strong tendency to perform natural, intrinsically stable coordination patterns, which consequently prevented them from learning the task. The present study evaluated the age-related role of augmented visual feedback for learning the new pattern. Participants were randomly assigned within age groups to receive either concurrent or terminal visual feedback after every trial in acquisition. In contrast to the pilot study, all of the older adults learned the pattern, although not to the same level as the younger adults. Both younger and older adults benefitted from concurrent visual feedback, but the older adults gained more from the concurrent feedback than the younger adults, relative to terminal feedback conditions. The results suggest that when learning bimanual coordination patterns, older adults are more sensitive to the structure of the practice conditions, particularly the availability of concurrent visual information. This greater sensitivity to the learning environment may reflect a diminished capacity for inhibitory control and a decreased ability to focus attention on the salient aspects of learning the task.  相似文献   

20.
It is well established that random practice compared to blocked practice enhances motor learning. Additionally, while information in the environment may be incidental, learning is also enhanced when an individual performs a task within the same environmental context in which the task was originally practiced. This study aimed to disentangle the effects of practice schedule and incidental/environmental context on motor learning. Participants practiced three finger sequences under either a random or blocked practice schedule. Each sequence was associated with specific incidental context (i.e., color and location on the computer screen) during practice. The participants were tested under the conditions when the sequence-context associations remained the same or were changed from that of practice. When the sequence-context association was changed, the participants who practiced under blocked schedule demonstrated greater performance decrement than those who practiced under random schedule. The findings suggested that those participants who practiced under random schedule were more resistant to the change of environmental context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号