首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated whether the left (LH) and right (RH) hemisphere play a different role in eliciting false recognition (FR) and whether their involvement in this memory illusion depends on the emotional content of stimuli. Negative and neutral pictures (taken from IAPS) were presented in the divided-visual field paradigm. Subjects task was to indicate whether the pictures had already been presented or not during the preceding study phase. FR rate was much higher for the RH than the LH presentations. In line, FR resulted in activations mainly in the right prefrontal cortex (PFC) for either RH or LH presentations. Emotional content of stimuli facilitated the formation of false memories and strengthened the involvement of the right PFC in FR induction.  相似文献   

2.
3.
ABSTRACT— Neuroimaging of declarative memory is not an endeavor divorced from psychology but, instead, is another path through which a more complete understanding of memory has emerged. Specifically, neuroimaging allows us to determine if differences between memory states emerge from quantitatively or qualitatively distinct underlying encoding operations. Further, it has allowed for greater specification of the putative control operations adopted when we make decisions about our memories. We describe some examples of insights provided by neuroimaging into the many and varied processes that support encoding and retrieval of declarative memory.  相似文献   

4.
The visual system has the remarkable ability to generalize across different viewpoints and exemplars to recognize abstract categories of objects, and to discriminate between different viewpoints and exemplars to recognize specific instances of particular objects. Behavioral experiments indicate the critical role of the right hemisphere in specific-viewpoint and -exemplar visual form processing and the left hemisphere in abstract-viewpoint and -exemplar visual form processing. Neuroimaging studies indicate the role of fusiform cortex in these processes, however results conflict in their support of the behavioral findings. We investigated this inconsistency in the present study by examining adaptation across viewpoint and exemplar changes in the functionally defined fusiform face area (FFA) and in fusiform regions exhibiting adaptation. Subjects were adapted to particular views of common objects and then tested with objects appearing in four critical conditions: same-exemplar, same-viewpoint adapted, same-exemplar, different-viewpoint adapted, different-exemplar adapted, and not adapted. In line with previous results, the FFA demonstrated a release from neural adaptation for repeated different viewpoints and exemplars of an object. In contrast to previous work, a (non-FFA) right medial fusiform area also demonstrated a release from neural adaptation for repeated different viewpoints and exemplars of an object. Finally, a left lateral fusiform area demonstrated neural adaptation for repeated different viewpoints, but not exemplars, of an object. Test-phase task demands did not affect adaptation in these regions. Together, results suggest that dissociable neural subsystems in fusiform cortex support the specific identification of a particular object and the abstract recognition of that object observed from a different viewpoint. In addition, results suggest that areas within fusiform cortex do not support abstract recognition of different exemplars of objects within a category.  相似文献   

5.
双加工理论认为熟悉性和回想是支持情景记忆的两种基本加工过程。一般认为熟悉性和回想都可以支持项目记忆,但只有回想能够支持联结记忆。然而,一体化假说提出,当刺激材料在学习阶段得到一体化编码,形成一个单一、整合的表征时,熟悉性也能够支持联结记忆。以往研究主要利用实验材料的固有特征,或使用定义法、交互表象法来实现对刺激材料的一体化编码,然后通过配对联结再认范式或来源记忆范式验证一体化假说。神经成像研究发现,位于内侧颞叶的嗅周皮层能够支持编码阶段一体化表征的形成和基于熟悉性对一体化表征的提取。未来研究应克服以往研究中存在的方法学缺陷、从功能神经网络的角度考察一体化加工的脑神经机制、并注重一体化编码策略在特殊人群中的应用价值。  相似文献   

6.
It is argued that during ongoing visual perception, the brain is generating top-down predictions to facilitate, guide and constrain the processing of incoming sensory input. Here we demonstrate that these predictions are drawn from a diverse range of cognitive processes, in order to generate the richest and most informative prediction signals. This is consistent with a central role for cognitive penetrability in visual perception. We review behavioural and mechanistic evidence that indicate a wide spectrum of domains—including object recognition, contextual associations, cognitive biases and affective state—that can directly influence visual perception. We combine these insights from the healthy brain with novel observations from neuropsychiatric disorders involving visual hallucinations, which highlight the consequences of imbalance between top-down signals and incoming sensory information. Together, these lines of evidence converge to indicate that predictive penetration, be it cognitive, social or emotional, should be considered a fundamental framework that supports visual perception.  相似文献   

7.
Numbsense is a phenomenon, wherein patients can correctly respond to somatosensory stimuli at a higher rate than expected by chance, but cannot perceive the same stimuli consciously. Previously, numbsense has been reported in tactile localization of stimuli on the patient’s own body. Here, we describe a patient with numbsense that involved touched objects. The patient could not recognize the majority of somatosensory stimuli after left parietal infarction, but could correctly select shape, texture, and object stimuli more frequently than expected by chance.  相似文献   

8.
The parafascicular (PF) nucleus, a posterior component of the intralaminar nuclei of the thalamus, is considered to be an essential structure in the feedback systems of basal ganglia–thalamo-cortical circuits critically involved in cognitive processes. The specific role played by multimodal information encoded in PF neurons in learning and memory processes is still unclear. We conducted two experiments to investigate the role of the PF in the spontaneous object recognition (SOR) task. The behavioral effects of pretraining rats with bilateral lesions of PF with N-methyl-D-aspartate (NMDA) were compared to vehicle controls. In the first experiment, rats were tested on their ability to remember the association immediately after training trials and in the second experiment after a 24 h delay. Our findings provide evidence that PF lesions critically affect both SOR tests and support its role in that non-spatial form of relational memory.  相似文献   

9.
Memory consolidation and reconsolidation require the induction of protein synthesis in some areas of the brain. Here, we show that infusion of the protein synthesis inhibitors anisomycin, emetine and cycloheximide in the entorhinal cortex immediately but not 180 min or 360 min after training in an object recognition learning task hinders long-term memory retention without affecting short-term memory or behavioral performance. Inhibition of protein synthesis in the entorhinal cortex after memory reactivation involving either a combination of familiar and novel objects or two familiar objects does not affect retention. Our data suggest that protein synthesis in the entorhinal cortex is necessary early after training for consolidation of object recognition memory. However, inhibition of protein synthesis in this cortical region after memory retrieval does not seem to affect the stability of the recognition trace.  相似文献   

10.
Some evidence suggests that the cerebellum participates in the complex network processing emotional facial expression. To evaluate the role of the cerebellum in recognising facial expressions we delivered transcranial direct current stimulation (tDCS) over the cerebellum and prefrontal cortex. A facial emotion recognition task was administered to 21 healthy subjects before and after cerebellar tDCS; we also tested subjects with a visual attention task and a visual analogue scale (VAS) for mood. Anodal and cathodal cerebellar tDCS both significantly enhanced sensory processing in response to negative facial expressions (anodal tDCS, p=.0021; cathodal tDCS, p=.018), but left positive emotion and neutral facial expressions unchanged (p>.05). tDCS over the right prefrontal cortex left facial expressions of both negative and positive emotion unchanged. These findings suggest that the cerebellum is specifically involved in processing facial expressions of negative emotion.  相似文献   

11.
How does the brain learn to recognize an object from multiple viewpoints while scanning a scene with eye movements? How does the brain avoid the problem of erroneously classifying parts of different objects together? How are attention and eye movements intelligently coordinated to facilitate object learning? A neural model provides a unified mechanistic explanation of how spatial and object attention work together to search a scene and learn what is in it. The ARTSCAN model predicts how an object's surface representation generates a form-fitting distribution of spatial attention, or "attentional shroud". All surface representations dynamically compete for spatial attention to form a shroud. The winning shroud persists during active scanning of the object. The shroud maintains sustained activity of an emerging view-invariant category representation while multiple view-specific category representations are learned and are linked through associative learning to the view-invariant object category. The shroud also helps to restrict scanning eye movements to salient features on the attended object. Object attention plays a role in controlling and stabilizing the learning of view-specific object categories. Spatial attention hereby coordinates the deployment of object attention during object category learning. Shroud collapse releases a reset signal that inhibits the active view-invariant category in the What cortical processing stream. Then a new shroud, corresponding to a different object, forms in the Where cortical processing stream, and search using attention shifts and eye movements continues to learn new objects throughout a scene. The model mechanistically clarifies basic properties of attention shifts (engage, move, disengage) and inhibition of return. It simulates human reaction time data about object-based spatial attention shifts, and learns with 98.1% accuracy and a compression of 430 on a letter database whose letters vary in size, position, and orientation. The model provides a powerful framework for unifying many data about spatial and object attention, and their interactions during perception, cognition, and action.  相似文献   

12.
We investigated the role of visual experience on the spatial representation and updating of haptic scenes by comparing recognition performance across sighted, congenitally and late blind participants. We first established that spatial updating occurs in sighted individuals to haptic scenes of novel objects. All participants were required to recognise a previously learned haptic scene of novel objects presented across the same or different orientation as learning whilst they either remained in the same position to moved to a new position relative to the scene. Scene rotation incurred a cost in recognition performance in all groups. However, overall haptic scene recognition performance was worse in the congenitally blind group. Moreover, unlike the late blind or sighted groups, the congenitally blind group were unable to compensate for the cost in scene rotation with observer motion. Our results suggest that vision plays an important role in representing and updating spatial information encoded through touch and have important implications for the role of vision in the development of neuronal areas involved in spatial cognition.  相似文献   

13.
We aimed to elicit emotion in patients with surgically circumscribed lesions of the prefrontal cortex (PFC) in order to elucidate the precise functional roles in emotion processing of the discrete subregions comprising the ventromedial PFC, including the medial PFC and orbitofrontal cortex (OFC). Three components of emotional reactivity were measured: subjective experience, behaviour, and physiological response. These included measures of self‐reported emotion, observer‐rated facial expression of emotion and measurements of heart rate and heart rate variability (HRV) during film viewing, and a measure of subjective emotional change since surgery. Patients with lesions to the ventromedial PFC demonstrated significant differences compared with controls in HRV during the film clips, suggesting a shift to greater dominance of sympathetic input. In contrast, patients with lesions restricted to the OFC showed significant differences in HRV suggesting reduced sympathetic input. They also showed less facial expression of emotion during positive film clips, and reported more subjective emotional change since surgery compared with controls. This human lesion study is important for refining theoretical models of emotion processing by the ventromedial PFC, which until now have primarily been based on anatomical connectivity, animal lesion, and human functional neuroimaging research. Such theories have implications for the treatment of a wide variety of emotional disorders.  相似文献   

14.
15.
16.
The right and left visual fields each project to the contralateral cerebral hemispheres, but the extent of the functional overlap of the two hemifields along the vertical meridian is still under debate. After presenting the spatial, temporal, and functional specifications of Transcranial Magnetic Stimulation (TMS), we show that TMS is particularly suitable to study the question of foveal representation as it allows one to study the effects of selective disruption of left or right hemisphere functions on the processing of centrally presented stimuli. Future strategies for the use of TMS in further tests of visual word recognition are suggested.  相似文献   

17.
Person recognition often unfolds over time and distance as a person approaches, with the quality of identity information from faces, bodies, and motion in constant flux. Participants were familiarized with identities using close‐up and distant videos. Recognition was tested with videos of people approaching from a distance. We varied the timing of prompted responses in the test videos, the amount of video seen, and whether the face, body, or whole person was visible. A free response condition was also included to allow participants to respond when they felt ‘confident’. The pattern of accuracy across conditions indicated that recognition judgments were based on the most recently available information, with no contribution from qualitatively diverse and statistically useful person cues available earlier in the video. Body recognition was stable across viewing distance, whereas face recognition improved with proximity. The body made an independent contribution to recognition only at the farthest distance tested. Free response latencies indicated meta‐knowledge of the optimal proximity for recognition from faces versus bodies. Notably, response bias varied strongly as a function of participants’ expectation about whether closer proximity video was forthcoming. These findings lay the groundwork for developing person recognition theories that generalize to natural viewing environments.  相似文献   

18.
The human visual system is able to efficiently extract symmetry information from the visual environment. Prior neuroimaging evidence has revealed symmetry-preferring neuronal representations in the dorsolateral extrastriate visual cortex; the objective of the present study was to investigate the necessity of these representations in symmetry discrimination. This was accomplished by the use of state-dependent transcranial magnetic stimulation, which combines the fine resolution of adaptation paradigms with the assessment of causality. Subjects were presented with adapters and targets consisting of dot configurations that could be symmetric along either the vertical or horizontal axis (or they could be non-symmetric), and they were asked to perform a symmetry discrimination task on the targets while fixating the center of the screen. TMS was applied during the delay between the adapter and the test stimulus over one of four different sites: Left or Right V1/V2, or left or right dorsolateral extrastriate cortex (DLO). TMS over both Left and Right DLO reduced the adaptation effect in detecting vertical and horizontal symmetry, although the Left DLO effect on horizontal symmetry and the Right DLO effect on both vertical and horizontal symmetry were present only when considering subjects who showed a behavioral adaptation effect in the baseline No-TMS condition. Application of TMS over the Left or Right V1/V2 did not modulate the adaptation effect. Overall, these data suggest that both the Left and Right DLO contain neuronal representations tuned to mirror symmetry which play a causal role in symmetry discrimination.  相似文献   

19.
Conflict and Cognitive Control in the Brain   总被引:2,自引:0,他引:2  
ABSTRACT— Recent research from cognitive psychology and cognitive neuroscience has suggested that the control mechanisms by which people are able to regulate task performance can be dissociated into evaluative and executive components. One process, implemented in the anterior cingulate cortex of the brain, monitors the amount of conflict that occurs during information processing; another process, implemented in the dorsolateral prefrontal cortex, is involved with maintaining the requirements of the task at hand and with biasing information processing in favor of appropriate responses. In the current article, we review this theory and some of the research that has supported it, including its implication for understanding cognitive disturbances in clinical disorders such as schizophrenia and obsessive-compulsive disorder. We conclude by addressing several interesting possibilities for future research.  相似文献   

20.
We assume that executive function constitutes an integrated set of cognitive processes that mediate working memory, planning, inhibition, flexibility, and decision making. Despite the acknowledged theoretical connection between executive function processes and emotional intelligence, such relationships have rarely been investigated. The purpose of this study was to examine the potential relationship between constructive thinking, conceived as a component of emotional intelligence, and executive function, as indexed by various existing neuropsychological and experimental instruments. We used the Constructive Thinking Inventory as a measure of emotional intelligence. We found that some constructive thinking subscales were able to predict distinct executive function variables. Emotional Coping, Categorical Thinking, and Esoteric Thinking subscales explained performance on various measures of executive function. Thus, we conclude that intervention programs designed to train a specific component of emotional intelligence, namely constructive thinking, could also facilitate performance in executive function processes, and vice versa. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号