首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although the ability to stand from a seated posture is relevant for clinical practice, there are few studies investigating the process of acquisition and refinement of the motor components involved in sit-to-stand movement (STS) in children. Therefore, this longitudinal study aims to describe kinematic characteristics of the STS movement in children from 12 to 18 months, and also to investigate the relationship between changes in STS movement and childrens’ daily-life mobility. Ten healthy children were evaluated at 12,13,14,15 and 18 months of age. A motion analysis system was used to measure total duration of STS movement and angular movements of each joint, and frequencies of successful and unsupported STS were obtained. The Pediatric Evaluation of Disability Inventory was used to assess childrens’ daily-life mobility. Results showed that children tend to increase the frequency of successful trials over the months by reducing the total duration and decreasing peak ankle dorsiflexion and trunk flexion during STS. Children also started to stand up from chair with decreased trunk flexion angle among ages. At the end of the STS, we observed decreases in trunk flexion and knee flexion over age. Furthermore, kinematic characteristics that reflect improvements in STS movement are related to better performance of functional skills and decreased level of assistance provided by the caregiver in daily-life mobility of younger children. However, the strength of these associations decreases from 14 months of age onwards.  相似文献   

2.
The goal of the present study was to determine the thus far unstudied effects of back loading on the kinematics and kinetics of sit-to-stand (STS) motion in healthy children. Fifteen children (8 boys, 7 girls, mean age 9.6 years, SD 1.2 years) were tested with no back load and with a back load of 10% and 20% of body weight, respectively. A motion analysis system was used with six infrared cameras and two force plates. Total STS duration did not change; however, differential effects were shown for the durations of its phases. Back loading increased ankle dorsiflexion yielding a greater maximal dorsiflexion angle. Effects on the knee angle were limited except for a significant decrease in final knee flexion. Initial and maximal hip flexion increased but final hip angle did not change. Initial backward pelvic tilt decreased and a shift to forward pelvic tilt occurred at an earlier stage of STS motion. Back loading affected trunk motion: maximal and final forward shoulder tilt increased. Maximal ankle and knee moments and powers increased; however, hip joint kinetics was not affected significantly. Therefore, while maintaining the general pattern of STS motion, participants showed selectively significant adjustments to back loading during its different phases. The main kinematic adjustments were increased trunk flexion and greater ankle dorsiflexion, while the major kinetic adjustment was increased knee extension moment. Increased back loading yielded more pronounced effects, primarily in the ankle. In sum, back loading substantially affected the biomechanics of STS motion even for the lower load level studied. This finding may be of clinical relevance for musculoskeletal disorders, but this needs to be examined.  相似文献   

3.
Abstract

Objective: To assess static and dynamic postural stability changes in children with high sacral level spina bifida.

Methods: Thirty-five children with high sacral level spina bifida and 35 age-matched healthy controls were enrolled. Their lower extremity muscle strengths and static and dynamic postural stability parameters were measured with the use of a dynamometer and the NeuroCom Balance Master® device, respectively. Functional gait and balance were evaluated using the five times sit-to-stand test (5STS) and the 6-minute walk test (6MWT). Spinal, hip, and ankle deformities of the patient group were measured by radiologic evaluation.

Results: In comparison with controls, patients were found to have lower ankle dorsiflexion and plantar-flexion strength, increased 5STS duration, and decreased 6MWT distance while both static and dynamic postural stability parameters were significantly different. Bilateral ankle muscle strengths were found to be negatively correlated with postural stability parameters. The presence of hydrocephalus or meningomyelocele in the patient group was found to have negative effects on static postural stability.

Conclusion: Static and dynamic postural stability is affected even in children with high sacral level spina bifida who are expected to have best condition in this patient population. The ankle muscle strength is the main factor influencing these changes.  相似文献   

4.
《Human movement science》1994,13(6):817-840
The behaviour of linked body segments during sit-to-stand was the subject of this study which investigated the relationship between the trunk and lower limb segments by varying the initial position of the trunk. Six subjects were videotaped as they stood up with feet on a forceplate from three initial positions: erect sitting, trunk flexed forward 30 deg, and 60 deg. When subjects actively flexed the trunk in the pre-extension phase, the order in which lower limb joints extended was knee, hip, ankle. However, when there was no active flexion, the order of onsets changed, the hip extending first followed by the knee and ankle. An extensor support moment (SM), a summation of extensor moments at hip, knee and ankle, occurred throughout the extension phase. The mean peak value of SM remained invariant in all three conditions despite variability in individual hip, knee and ankle moments. When active trunk flexion was absent, the duration of the extension phase was longer and a high value of SM was sustained for a longer proportion of the phase, indicating that more muscle force was required. The findings support the view that biomechanical characteristics emerge naturally from a functional coupling between segments, according to the demands of the action.  相似文献   

5.
PurposeRestricted ankle dorsiflexion can promote aberrant biomechanics associated with risk for knee injury during dynamic activities. Attentionally focused instructions have been used to improve high-risk knee biomechanics during landing tasks. Yet, it is unknown whether attentionally focused instruction can effectively improve landing patterns in the presence of a mechanical restriction on the ankle. Therefore, our purpose was to determine whether restricting ankle dorsiflexion by use of bracing mitigated the effects of attentional foci on landing biomechanics in healthy females.MethodsWe used a crossover design to investigate lower extremity biomechanics in 19 healthy females between the ages of 18–35 during a series of jump-landing tasks. Participants completed 6 blocks of 3 jump-landings on separate force platforms in a randomized order based on brace condition (brace, no brace) and mode of attentional foci (neutral, internal focus [IF], external focus [EF]). Attentionally focused instructions were provided immediately prior to 3 practice jump-landings, followed by 5 test jump-landings with self-controlled feedback only.ResultsAnkle bracing decreased peak dorsiflexion and sagittal range of motion (ROM) (mean difference: 5.7–5.8°), and peak inversion and frontal ROM (mean difference: 2.4–3.0°). However, hip flexion ROM (mean difference: 1.8°) increased compared to the no brace condition. Regardless of ankle bracing, EF instruction increased peak hip flexion (mean difference: 4.9°) and hip flexion range of motion (mean difference: 3.8–4.6°), while decreasing peak knee valgus (mean difference: 0.8–1.0°) and knee valgus moment (mean difference: 0.04 Nm/kg). Additionally, EF instruction increased peak hip abduction to a similar degree when braced (mean difference: 3.6–4.0°) and not braced (mean difference: 2.1–2.5°). Lastly, EF instruction increased hip abduction ROM only when braced (mean difference: 2.3–2.4°), but decreased peak knee valgus power only when not braced (mean difference: 0.18 W/kg).ConclusionsOur findings indicate that mechanically restricting ankle dorsiflexion does not mitigate the ability of EF instruction to enhance jump-landing performance by means of improving hip and knee biomechanics in healthy females. However, our findings suggest an improved ability to control the rate of knee valgus loading when not braced. Therefore, we conclude that EF instruction remains a viable clinical strategy to improve landing patterns in the presence of restricted ankle dorsiflexion, yet this approach may be ineffective to reduce the rate of knee joint loading.  相似文献   

6.
There are 3 significant challenges to sit-to-stand: (a) bringing the center of mass forward, (b) vertically raising the center of mass from the sitting to standing position, and (c) transition from a relatively large and stable base of support in sitting to a considerably smaller base of support when standing. The authors explored the challenges to stability control following sit-to-stand when the requirement for horizontal movement of the center of mass was influenced by foot position and their potential effect on the preceding phases of sit-to-stand. Eleven healthy young and 11 healthy elderly individuals performed the sit-to-stand with their feet further away and closer to the chair. Kinetic and kinematic data were recorded. Regardless of foot position, challenges in stability were greater in elderly participants than young participants despite their similar movement time and shear forces. The greater instability in elderly participants, despite their comparable movement characteristics, emphasizes the importance of stability control following sit-to-stand performance. For both young and elderly participants, the sit-to-stand duration and the shear forces were greater in the far condition. However, foot position did not affect the stability measures (i.e., duration of the stabilization phase and the total center of pressure path during the 1st second of the stabilization phase).  相似文献   

7.
We investigated postural movement associated with bilateral arm flexion in response to a light signal during standing in 179 healthy men and women to assess whether individual and sex differences arc evident in the postural movement pattern. The following results were obtained. (a) A correlation of -.87 was noted between movement angles of the foot-leg and leg-trunk. (b) Individual differences in movement angle were approximately twice as large in the hip joint as in the ankle and knee joints, and the movement angle of the leg trunk showed approximately half the number of extension as flexion movements. (c) The postural movement pattern was categorized on the basis of the movement angle of the foot leg and leg trunk into the following three patterns: hip flexion, backward leaning, and hip extension. The percentages of subjects showing these patterns were 59.2%, 33.5%, and 7.3%, respectively. (d) The inclination angle reflecting the righting response showed a gradual increase in size in the order of trunk, head, and neck. However, the righting response was not controlled precisely enough to enable subjects to maintain the inclination angle in a quiet standing posture. (e) We identified a significant sex difference in the relative frequency of subjects in the postural movement pattern.  相似文献   

8.
During stance, head extension increases postural sway, possibly due to interference with sensory feedback. The sit-to-stand movement is potentially destabilizing due to the development of momentum as the trunk flexes forward and the body transitions to a smaller base of support. It is unclear what role head orientation plays in the postural and movement characteristics of the sit-to-stand transition. The authors assessed how moving from sitting to standing with head-on-trunk extension compared with moving with the head neutral or flexed, or with moving with the head facing forward in space (which would involve head-on-trunk extension, but not head-in-space extension) in healthy, young participants. Head-on-trunk extension increased center of pressure variability, but decreased movement velocities, movement duration, and trunk flexion compared with flexed and neutral head-on-trunk orientations. Similarities in movement characteristics between head-on-trunk extension and the forward head-in-space orientation suggest that stabilizing the head in space does not fully counteract the postural and movement changes due to head-on-trunk extension. Findings suggest that proprioceptive feedback from the neck muscles contributes to the regulation of posture and movement, and therefore should not be overlooked in research on the role of sensory feedback in postural control.  相似文献   

9.
During stance, head extension increases postural sway, possibly due to interference with sensory feedback. The sit-to-stand movement is potentially destabilizing due to the development of momentum as the trunk flexes forward and the body transitions to a smaller base of support. It is unclear what role head orientation plays in the postural and movement characteristics of the sit-to-stand transition. The authors assessed how moving from sitting to standing with head-on-trunk extension compared with moving with the head neutral or flexed, or with moving with the head facing forward in space (which would involve head-on-trunk extension, but not head-in-space extension) in healthy, young participants. Head-on-trunk extension increased center of pressure variability, but decreased movement velocities, movement duration, and trunk flexion compared with flexed and neutral head-on-trunk orientations. Similarities in movement characteristics between head-on-trunk extension and the forward head-in-space orientation suggest that stabilizing the head in space does not fully counteract the postural and movement changes due to head-on-trunk extension. Findings suggest that proprioceptive feedback from the neck muscles contributes to the regulation of posture and movement, and therefore should not be overlooked in research on the role of sensory feedback in postural control.  相似文献   

10.
The study aims to test three hypotheses: (a) the rotation of the upper trunk consists of roll, pitch and yaw of frequencies harmonic to the stroke frequency of the front crawl stroke, (b) the rotation of the upper trunk generates back-and-forth movements of the shoulders, which enhances the movements of the stroking arms, and (c) the angular velocities of roll, pitch and yaw are associated with hand propulsion (HP). Front crawl strokes performed by twenty male swimmers were measured with a motion capture system. The roll, pitch and yaw angles about the three orthogonal axes embedded in the upper trunk were determined as three sequential Cardan angles and their angular velocities were determined as the three respective components of the angular velocity. HP and the drag and lift components of HP (HPD and HPL) were estimated by the hand positions and the data from twelve pressure sensors attached on hands. The roll, pitch, and yaw angles were altered in frequencies harmonic to the stroke frequency during the front crawl stroke. Shoulders alternately moved back and forth due to the upper trunk rotation. In the pull phase the angular velocity of roll was correlated with HPL (r = −0.62, p = 0.004). Based on the back-and-forth movements of the shoulders and roll motion relative to a hand movement, the arm-stroke technique of the front crawl swimming was discussed in terms of increasing the hand velocity and HP.  相似文献   

11.
ObjectiveGait variability is a measure of gait disturbance, and therefore constitutes a useful parameter for gait assessment as well as planning of therapeutic and medical interventions. To date, variability during walking has not been adequately analyzed in amputees. The aim of this examination was to evaluate trunk and pelvic movement variability in transfemoral amputees. The effect of different types of walking surfaces on variability in trunk and pelvic movement was also studied.MethodThis prospective clinical examination compares 20 transfemoral amputees (17 ♂, 42 ± 16 years; 3 ♀, 48 ± 3 years) with a group of 20 age and mass matched healthy controls regarding the extent of variability in trunk and pelvic movement. Kinematic data of trunk and pelvic movement during walking on level, uneven ground and slope was captured by eight infrared cameras (Vicon Nexus ™, Oxford, UK). Variability in trunk and pelvic movement was analyzed. Univariate ANCOVA and ANOVA with repeated measures and post hoc tests were used for statistical comparison. Fall history was retrospectively collected from medical history to assess the association between falls and variability in trunk and pelvic movement.ResultsTrunk and pelvic movement variability in amputees was significantly higher during walking on uneven ground and slope compared to healthy controls (p ≤ 0.05). Variability in trunk and pelvic movement was increased during walking on uneven ground and slope compared to even ground for both groups (p ≤ 0.05).ConclusionAmputees showed increased trunk and pelvic movement variability during walking on uneven ground and slope, indicating an affected gait pattern in comparison to healthy controls. Therefore, trunk and pelvic movement variability could be a potential marker for gait quality with diagnostic implications.  相似文献   

12.
This study investigated the effects of unilateral grab rail assistance during the sit-to-stand transfer to develop an understanding of lower limb joint mechanics and whole body movement patterns. External reaction forces at the grab rail and floor interfaces were also investigated to understand the nature of the assistance provided by the introduction of unilateral upper body assistance. While 12 older aged adults performed the sit-to-stand, three-dimensional body segment kinematics were recorded to determine lower body joint motion and whole body centre of mass motion. Grab rail reaction forces and bilateral ground reaction forces were recorded to determine external reaction forces and lower body joint kinetics. Grab rail assisted conditions were compared with unassisted transfers. During grab rail assistance, a systematic asymmetry was introduced to lower limb joint kinetics, without noticeable alterations to peak lower body joint motion and whole body movement patterns. Ipsilateral net joint moments and powers decreased in the ankle and hip and increased in the knee, while the contralateral net joint moments and powers increased in the hip and decreased in the knee. Joint kinetic and kinematic responses suggest a motor control strategy that maintains symmetric sit-to-stand movement patterns by adjusting bilateral muscle control when a unilateral external reaction force is provided. Understanding the mechanical assistance that is generated during the sit-to-stand will facilitate optimal design of grab rails for older aged adults and may contribute to design for specific pathologies. Such design implementation will influence the ability of older aged adults to remain independent in the community.  相似文献   

13.
Although more commonly done by children, hopping appears to be a rich source of neuromuscular and biomechanical information on adults. Given prior research on the independent effects of hopping frequency and added mass, this study assessed whether these would interact to affect vertical stiffness, contact duration, and lower extremity kinematics during unipedal hopping. Vertical force and two-dimensional kinematics were measured in 10 healthy males hopping at three frequencies: their preferred hopping frequency and frequencies 20% higher and 20% lower, in two conditions with added mass (body mass+10% and body mass+20%). Vertical stiffness was directly related to hopping frequency, while hip flexion, knee flexion, and ankle dorsiflexion were inversely related to hopping frequency. Additional mass significantly increased ankle dorsiflexion and contact duration but did not significantly affect hip flexion, knee flexion, or vertical stiffness. The differential response of vertical stiffness to hopping frequency and added mass was consistent with predictions based on a mass-spring model. The interactive effect of frequency and added mass on the kinematics of the lower extremity and contact period were consistent with earlier studies of the independent effects of hopping frequency and added mass.  相似文献   

14.
Frequency characteristics of head stabilization were examined during locomotor tasks in healthy young adults(N = 8) who performed normal walking and 3 walking tasks designed to produce perturbations primarily in the horizontal plane. In the 3 walking tasks, the arms moved in phase with leg movement, with abnormally large amplitude, and at twice the frequency of leg movement. Head-in-space angular velocity was examined at the predominant frequencies of trunk motion. Head movements in space occurred at low frequencies (< 4.0 Hz) in all conditions and at higher frequencies (> 4.0 Hz) when the arms moved at twice the frequency of the legs. Head stabilization strategies were determined from head-on-trunk with respect to trunk frequency profiles derived from angular velocity data. During natural walking at low frequencies (< 3.0 Hz), head-on-trunk movement was less than trunk movement. At frequencies 3.0 Hz or greater, equal and opposite compensatory movement ensured head stability. When arm swing was altered, compensatory movement guaranteed head stability at all frequencies. Head stabilization was successful for frequencies up to 10.0 Hz during locomotor tasks. Maintaining head stability at high frequencies during voluntary tasks suggests that participants used feedforward mechanisms to coordinate head and trunk movements. Maintenance of head stability during dynamic tasks allows optimal conditions for vestibulo-ocular reflex function.  相似文献   

15.
Frequency characteristics of head stabilization were examined during locomotor tasks in healthy young adults (N = 8) who performed normal walking and 3 walking tasks designed to produce perturbations primarily in the horizontal plane. In the 3 walking tasks, the arms moved in phase with leg movement, with abnormally large amplitude, and at twice the frequency of leg movement. Head-in-space angular velocity was examined at the predominant frequencies of trunk motion. Head movements in space occurred at low frequencies (< 4.0 Hz) in all conditions and at higher frequencies (> 4.0 Hz) when the arms moved at twice the frequency of the legs. Head stabilization strategies were determined from head-on-trunk with respect to trunk frequency profiles derived from angular velocity data. During natural walking at low frequencies (< 3.0 Hz), head-on-trunk movement was less than trunk movement. At frequencies 3.0 Hz or greater, equal and opposite compensatory movement ensured head stability. When arm swing was altered, compensatory movement guaranteed head stability at all frequencies. Head stabilization was successful for frequencies up to 10.0 Hz during locomotor tasks Maintaining head stability at high frequencies during voluntary tasks suggests that participants used feedforward mechanisms to coordinate head and trunk movements. Maintenance of head stability during dynamic tasks allows optimal conditions for vestibulo-ocular reflex function.  相似文献   

16.
BackgroundObstacle circumvention is a challenging task in Parkinson's disease (PD). Body segments adjustments, such as changing the direction of the trunk, followed by a change in the direction of the head, and modifications in the positioning of the feet, are necessary to circumvent an obstacle during walking. For that, individuals need to identify the distance to the obstacle, its characteristics (such as its dimension), and perform well-coordinated movements. However, PD is characterized by rigidity, which may be increased in the axial axis and compromise the task execution. Also, worsening sensory integration in PD may increase the time to perform these body segments adjustments, thus impairing the movement coordination when starting obstacle circumvention near to the obstacle.AimTo determine if the starting distance (1.5 m, 3 m, or 5 m) from the obstacle could modify the intersegmental coordination (specifically, the coordination between head, trunk, and pelvis) during the obstacle circumvention steps in individuals with PD.MethodsFourteen individuals with a diagnosis of idiopathic PD and 15 neurologically healthy individuals (CG) from the community were included in this study. The participants were evaluated in three different gait conditions, according to the starting distance from the obstacle: 1.5 m, 3 m, and 5 m away from the obstacle. Vector coding technique was employed to establish the coupling between head, trunk, and pelvis in the steps immediately before and during obstacle circumvention. Three-way ANOVA's (group, distance, and step) were calculated with the level of significance at p < 0.05.ResultsFor all couplings of coordination, there were no effects of distance. However, significant main effects of group and steps (p < 0.05) were found for all couplings with different patterns of coordination: head/pelvis (group: in-phase and anti-phase variables; steps: anti-phase variable), head/trunk (group: trunk variable; steps: in-phase and anti-phase variables) and trunk/pelvis (group: anti-phase; steps: trunk and pelvis). Finally, only head/trunk coupling showed an interaction between group*steps. Individuals with PD showed 7.95% lower head movement (p < 0.024) and 14.85% greater trunk movement than CG (p < 0.002). Also, individuals with PD performed 17.56% greater head movement in the step before the circumvention compared to the step during circumvention (p < 0.044).ConclusionThe starting distance from the obstacle did not influence the pattern of axial intersegmental coordination in both groups. However, how these segments interact in the preparation and during the obstacle circumvention are opposite in individuals with PD. While on the previous step to obstacle circumvention, the head movement was greater than the trunk, during the obstacle circumvention step, individuals with PD rotated the trunk more.  相似文献   

17.
The sit-to-stand movement strategy of each subject is different depending on whether the subjects perform voluntary movements or have concrete instructions (i.e., stand quickly), which is strongly reflected in the performance of each sit-to-stand movement phase. Thirty young-adult male subjects participated in this study (M age=20.7 yr; SD=2.6). Subjects performed the two movements from a chair height adjusted to the subject's lower thigh length. In the self-administered (SA) condition, subjects voluntarily stood up from the chair without instruction, and in the assigned-ordered (AO) condition subjects stood up from the chair as fast as possible. Vertical floor reaction force and electromyograms of the rectus femoris and tibialis anterior muscles were measured, and 15 parameters were selected. The parameters in the phase between the peak value of the floor reaction force and completion of the movement was highly reliable regardless of instruction. However, other parameters had different reliabilities between the instruction conditions. In particular, the parameters in the phase between starting the movement and the peak value of the floor reaction force under the assigned-order were higher than those of the self-administered condition. Moreover, the sit-to-stand movement was conducted faster in the assigned-order condition during the phase between starting the movement and buttocks-syneresis, and the peak value of the floor reaction force and completion of the movement. From the above, in the assigned-order condition "as fast as possible," the anteflexion bending movement and extension of knee and trunk joints were faster, and anteflexion movement was repeated more similarly under a concrete instruction such as moving as fast as possible.  相似文献   

18.
Niu W  Wang Y  He Y  Fan Y  Zhao Q 《Human movement science》2011,30(3):614-623
The biomechanical difference between the dominant and non-dominant limb has seldom been studied during double-leg landing. The objective of this study was to evaluate the effectiveness of limb laterality on the ankle kinematics, kinetics and electromyogram (EMG) during drop landing. Sixteen healthy adults were recruited and dropped individually from platforms with three different heights (0.32 m, 0.52 m, and 0.72 m). The ground reaction force, ankle joint kinematics, and surface EMG of tibialis anterior (TA) and lateral gastrocnemius (LG) were measured in both lower extremities. Two-way analysis of variance was used to analyze the effects of laterality and dropping height. The peak angular velocities in dorsiflexion and abduction were significantly higher in the dominant ankle, whereas the pre- and post-landing EMG amplitudes of the TA were significantly higher in the non-dominant limb. Compared with the dominant side, the non-dominant ankle has a more effective protective mechanism in that excessive joint motion is restrained by greater ankle flexor activity. Compared with the non-dominant side, the dominant ankle joint is in greater injury risk during drop landing, and data measured in the dominant limb may produce more conservative conclusions for injury protection or prediction.  相似文献   

19.
The sit-to-stand motion is a prerequisite for walking and is therefore frequently performed in daily life. Diseases such as stroke often make performing it challenging. Even the stroke survivors who can stand up, the number of sit-to-stand motions they perform each day is lower than that of healthy adults. The inability of stroke survivors to stand up many times might be due to uneven distribution of mechanical energy expenditure across body parts. However, it was unclear in which body part this mechanical energy expenditure was concentrated, i.e., whether it was due to co-contraction of the paretic limb or compensation by the sound limb. Thus, this study aims to identify which body parts are responsible for mechanical energy expenditure in stroke survivors. Ten stroke survivors and ten healthy adults performed sit-to-stand motion recorded using motion capture cameras. We created a 3-D human model and calculated the mechanical energy expenditure for each joint and segment. The stroke survivors expended more mechanical energy in the affected hip and waist in contrast to the affected knee. Notably, a compensatory relationship for mechanical energy expenditure was observed between adjacent joints on the affected side and not between the affected and sound limbs. This is because stroke survivors may have achieved the sit-to-stand motion by compensating for the distal part with the less impaired proximal part. In addition, the more severe the movement disorders, the more mechanical energy must be expended in the paretic hip to achieve the sit-to-stand motion. These results could contribute to fundamental knowledge about more comfortable daily living in stroke survivors.  相似文献   

20.
Elite dancers perform highly skilled and consistent movements. These movements require effective regulation of the intrinsic and extrinsic forces acting within and on the body. Customized, compliant floors typically used in dance are assumed to enhance dance performance and reduce injury risk by dampening ground reaction forces during tasks such as landings. As floor compliance can affect the extrinsic forces applied to the body, secondary effects of floor properties may be observed in the movement consistency or kinematic variability exhibited during dance performance. The aim of this study was to investigate the effects of floor mechanical properties on lower extremity kinematic variability in dancers performing landing tasks. A vector coding technique was used to analyze sagittal plane knee and ankle joint kinematic variability, in a cohort of 12 pre-professional dancers, through discrete phases of drop landings from a height of 0.2 m. No effect on kinematic variability was observed between floors, indicating that dancers could accommodate the changing extrinsic floor conditions. Future research may consider repeat analysis under more dynamic task constraints with a less experienced cohort. However, knee/ankle joint kinematic variability was observed to increase late in the landing phase which was predominantly comprised of knee flexion coupled with the terminal range of ankle dorsiflexion. These findings may be the result of greater neural input late in the landing phase as opposed to the suggested passive mechanical interaction of the foot and ankle complex at initial contact with a floor. Analysis of joint coordination in discrete movement phases may be of benefit in identifying intrinsic sources of variability in dynamic tasks that involve multiple movement phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号