首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Data from lesion studies suggest that the ability to perceive speech sounds, as measured by auditory comprehension tasks, is supported by temporal lobe systems in both the left and right hemisphere. For example, patients with left temporal lobe damage and auditory comprehension deficits (i.e., Wernicke's aphasics), nonetheless comprehend isolated words better than one would expect if their speech perception system had been largely destroyed (70-80% accuracy). Further, when comprehension fails in such patients their errors are more often semantically-based, than-phonemically based. The question addressed by the present study is whether this ability of the right hemisphere to process speech sounds is a result of plastic reorganization following chronic left hemisphere damage, or whether the ability exists in undamaged language systems. We sought to test these possibilities by studying auditory comprehension in acute left versus right hemisphere deactivation during Wada procedures. A series of 20 patients undergoing clinically indicated Wada procedures were asked to listen to an auditorily presented stimulus word, and then point to its matching picture on a card that contained the target picture, a semantic foil, a phonemic foil, and an unrelated foil. This task was performed under three conditions, baseline, during left carotid injection of sodium amytal, and during right carotid injection of sodium amytal. Overall, left hemisphere injection led to a significantly higher error rate than right hemisphere injection. However, consistent with lesion work, the majority (75%) of these errors were semantic in nature. These findings suggest that auditory comprehension deficits are predominantly semantic in nature, even following acute left hemisphere disruption. This, in turn, supports the hypothesis that the right hemisphere is capable of speech sound processing in the intact brain.  相似文献   

2.
Event-related potential (ERP) studies have shown that emotional stimuli elicit greater amplitude late positive-polarity potentials (LPPs) than neutral stimuli. This effect has been attributed to arousal, but emotional stimuli are also more semantically coherent than uncategorized neutral stimuli. ERPs were recorded during encoding of positive, negative, uncategorized neutral, and categorized neutral words. Differences in LPP amplitude elicited by emotional versus uncategorized neutral stimuli were evident from 450 to 1000 ms. From 450 to 700 ms, LPP effects at midline and right hemisphere frontal electrodes indexed arousal, whereas LPP effects at left hemisphere centro-parietal electrodes indexed semantic cohesion. This dissociation helps specify the processes underlying emotional stimulus encoding, and suggests the need to control for semantic cohesion in emotional information processing studies.  相似文献   

3.
The limited capacity of face perception resources in the left cerebral hemisphere was examined using a sex categorization task. One study tested the hypothesis that sex categorization is impeded whenever feature extraction resources in the left hemisphere are simultaneously being utilized by another task. This hypothesis was tested by presenting prime faces for either 32 ms or 320 ms to either the left or right visual-field just before centrally presented target faces were categorized by sex. Results showed that sex categorization was slower after prime faces were presented for 32 ms in the right visual-field compared to the left visual-field. This difference was not found after the 320 ms prime length. The results are interpreted in the context of a neurocognitive model of social perception and suggest that efficient sex categorization depends, in part, on the availability of facial feature extraction resources in the left hemisphere.  相似文献   

4.
Studies of patients with category-specific semantic deficits suggest that the right and left cerebral hemispheres may be differently involved in the processing of living and nonliving domains concepts. In this study, we investigate whether there are hemisphere differences in the semantic processing of these domains in healthy volunteers. Based on the neuropsychological findings, we predicted a disadvantage for nonliving compared to living concepts in the right hemisphere. Our prediction was supported, in that semantic decisions to nonliving concepts were significantly slower and more error-prone when presented to the right hemisphere. In contrast there were no hemisphere differences for living concepts. These findings are consistent with either differential representation or processing of concepts across right and left hemispheres. However, we also found a disadvantage for nonliving things compared to living things in the left hemisphere, which is not consistent with a simple representation account. We discuss these findings in terms of qualitatively different semantic processing in right and left hemispheres within the framework of a distributed model of conceptual representation.  相似文献   

5.
Evoked potentials of 16 human infants (mean age = 5.0 weeks, SD = 1.8 weeks) were recorded from the left and right, occipital and temporal areas. Spectral analysis showed a high amplitude, localized, coherent center of activity within the left temporal area for click stimuli, and a high amplitude, localized center of activity in the right occipital area for flash stimuli. It was proposed that the structured auditory information of the click and the unstructured visual information of the flash represented different degrees of familiarity to the subjects. With this hypothesis, left hemisphere involvement in stimulus processing would increase as the stimulus became more referrable to previous long- or short-term experience. Conversely, right hemisphere involvement would increase with unfamiliar stimuli which could not be readily associated with earlier data.  相似文献   

6.
Social conceptual knowledge is imperative to communicate with, interact with, and interpret human society; however, little is known about the neural basis of social concepts. Previous research has predominantly suggested that the right anterior temporal lobe (ATL) may specifically represent social conceptual knowledge, whereas the left ATL is necessary for general semantic processing. However, this view has not always been supported by empirical studies. Employing a lateralized design and two different semantic tasks and a nonsemantic control task, we aimed to clarify some of these ambiguities by potentially dissociating left from right functionality and social from nonsocial concepts, using inhibitory repetitive transcranial magnetic stimulation (rTMS) coupled with a sham and control site stimulation (N = 56). The results showed that stimulation of the left ATL led to overall faster processing times without affecting accuracy, whilst the right ATL and control groups did not significantly change in reaction times or accuracy. No difference occurred between social and nonsocial concepts after stimulation. This study is the first to show that inhibition of the left temporal lobe may improve performance on a semantic task and provides evidence that the ATLs may be lateralized in conceptual processing. The results do not confirm that the right temporal lobe is crucial for social conceptual processing, as inhibition did not significantly affect performance for social concepts.  相似文献   

7.
The left hemisphere is specialized for most linguistic tasks and the right hemisphere is specialized for many non-linguistic tasks, but the cause of these functional asymmetries is unknown. One of the stimulus factors that appears to influence these asymmetries is the rate at which stimuli change. In the present experiment, 41 participants completed the Fused Dichotic Words Test (FDWT) and a non-linguistic Frequency Transition Task (FTT) wherein the Frequency Transitions (FTs) were either rapid (40 ms) or relatively slow (200 ms). There was a right hemisphere advantage for slow FTs when the change was at the front of the stimulus, but no corresponding left hemisphere advantage for the rapid FTs. There was no relationship between either FTT and the left hemisphere advantage exhibited on the FDWT. This finding provides support for the position that the right hemisphere dominates tasks that require temporal processing over relatively long periods of time.  相似文献   

8.
The structure of people's conceptual knowledge of concrete nouns has traditionally been viewed as hierarchical ( Collins & Quillian, 1969 ). For example, superordinate concepts ( vegetable ) are assumed to reside at a higher level than basic-level concepts ( carrot ). A feature-based attractor network with a single layer of semantic features developed representations of both basic-level and superordinate concepts. No hierarchical structure was built into the network. In Experiment and Simulation 1, the graded structure of categories (typicality ratings) is accounted for by the flat attractor network. Experiment and Simulation 2 show that, as with basic-level concepts, such a network predicts feature verification latencies for superordinate concepts ( vegetable ). In Experiment and Simulation 3, counterintuitive results regarding the temporal dynamics of similarity in semantic priming are explained by the model. By treating both types of concepts the same in terms of representation, learning, and computations, the model provides new insights into semantic memory.  相似文献   

9.
In recent years, the anatomical and functional bases of conceptual activity have attracted a growing interest. In particular, Patterson and Lambon-Ralph have proposed the existence, in the anterior parts of the temporal lobes, of a mechanism (the 'amodal semantic hub') supporting the interactive activation of semantic representations in all modalities and for all semantic categories. The aim of then present paper is to discuss this model, arguing against the notion of an 'amodal' semantic hub, because we maintain, in agreement with the Damasio's construct of 'higher-order convergence zone', that a continuum exists between perceptual information and conceptual representations, whereas the 'amodal' account views perceptual informations only as a channel through which abstract semantic knowledge can be activated. According to our model, semantic organization can be better explained by two orthogonal higher-order convergence systems, concerning, on one hand, the right vs. left hemisphere and, on the other hand, the ventral vs. dorsal processing pathways. This model posits that conceptual representations may be mainly based upon perceptual activities in the right hemisphere and upon verbal mediation in the left side of the brain. It also assumes that conceptual knowledge based on the convergence of highly processed visual information with other perceptual data (and mainly concerning living categories) may be bilaterally represented in the anterior parts of the temporal lobes, whereas knowledge based on the integration of visual data with action schemata (namely knowledge of actions, body parts and artefacts) may be more represented in the left fronto-temporo-parietal areas.  相似文献   

10.
新颖语义联结形成是创造性思维的重要加工过程。采用谜题型歇后语为材料,直接操控语义联结的新颖性,通过两个实验考察汉语新颖语义联结形成的神经机制。实验1采用fMRI记录谜题型歇后语阅读理解过程的神经活动,结果显示相对于寻常语义关联条件,新颖语义关联条件更强地激活了右侧颞上回,该脑区可能与新颖语义信息的激活有关。实验2采用ERP技术在语义关联性判断任务中考察新颖语义联结形成神经加工的时空特征,结果显示相对于寻常语义关联条件,新颖语义关联条件在右侧颞区和右侧额区诱发了更正的晚期正成分,可能分别反映了新颖语义信息的激活以及选择与整合。研究结果支持了新颖语义联结形成的右半球加工优势效应。  相似文献   

11.
Three experiments designed to test autistic children's nonverbal and verbal categorization abilities are reported in this paper. In the first two experiments, 14 autistic children were compared to 14 retarded and 14 normal children matched on verbal mental age. Their ability to categorize pictures from basic level categories and from biological and artifactual superordinate level categories was assessed using a matching-to-sample procedure. The three groups of subjects were similar in their performance. Basic level categorization was easier than more abstract categorization, and for all three groups, prototypicality played a role in categorizing superordinate level concepts; that is, children in all three groups made more errors categorizing peripheral examples. In the third experiment, a subgroup of 7 autistic children showed evidence that their lexicons were well organized and that they appreciated the meaning relationships among words at the superordinate level. These findings suggest that autistic children do not suffer a specific cognitive deficit in the ability to categorize and form abstract concepts, as has been previously suggested in the literature.  相似文献   

12.
This study investigated functional differences in the processing of visual temporal information between the left and right hemispheres (LH and RH). Participants indicated whether or not a checkerboard pattern contained a temporal gap lasting between 10 and 40 ms. When the stimulus contained a temporal signal (i.e. a gap), responses were more accurate for the right visual field-left hemisphere (RVF-LH) than for the left visual field-right hemisphere (LVF-RH). This RVF-LH advantage was larger for the shorter gap durations (Experiments 1 and 2), suggesting that the LH has finer temporal resolution than the RH, and is efficient for transient detection. In contrast, for noise trials (i.e. trial without temporal signals), there was a LVF-RH advantage. This LVF-RH advantage was observed when the entire stimulus duration was long (240 ms, Experiment 1), but was eliminated when the duration was short (120 ms, Experiment 2). In Experiment 3, where the gap was placed toward the end of the stimulus presentation, a LVF-RH advantage was found for noise trials whereas the RVF-LH advantage was eliminated for signal trials. It is likely that participants needed to monitor the stimulus for a longer period of time when the gap was absent (i.e. noise trials) or was placed toward the end of the presentation. The RH may therefore be more efficient in the sustained monitoring of visual temporal information whereas the LH is more efficient for transient detection.  相似文献   

13.
Using a classic letter-ring metacontrast paradigm, left and right visual field meta-contrast functions were separately determined. The parallel U-shaped recognition functions for both half-fields were found to interact differentially with stimulus onset asynchrony, the left visual field function being displaced by 13 ms toward longer test stimulus-masking stimulus separations. This result was consistent with the hypothesis of longer processing time requirements for verbal stimuli delivered to the right than to the left hemisphere. This indicates that the neural locus (loci) responsible for left visual field verbal processing delay is (are) capable of mediating metacontrast phenomena. It was tentatively concluded that a relative processing delay within the right hemisphere underlies the differing visual half-field metacontrast interaction with stimulus onset asynchrony.  相似文献   

14.
In Experiment 1 neither hearing nor prelingually deaf signing adolescents showed marked lateralization for lexical decision but, unlike the hearing, the deaf were not impaired by the introduction of pseudohomophones. In Experiment 2 semantic categorization produced a left hemisphere advantage in the hearing for words but not pictures whereas in the deaf words and signs but not pictures showed a right hemisphere advantage. In Experiment 3 the lexical decision and semantic categorization findings were confirmed and both groups showed a right hemisphere advantage for a face/nonface decision task. The possible effect of initial language acquisition on the development of hemispheric lateralization for language is discussed.  相似文献   

15.
Gordon and Carmon (1976) reported that repeated presentations of an initially novel stimulus were associated with a transfer of cerebral dominance over time (trials) from the right to the left hemisphere. To test the generalizability of these results the proportions of alpha rhythms over the left and right occipital and parietal lobes were measured following the presentation of recurring and nonrecurring complex visual patterns (the Kimura Figures) to the upper or lower, left or right peripheral visual fields. Analysis showed increased electrical activation (as inferred by attenuated proportions of alpha rhythms) of the left occipital lobe but decreased activation of the right occipital lobe. This shift occurred during repeated presentations of the same stimuli but not during single presentations of different novel stimuli. There was no significant shift in this activity over the parietal lobes. These results are consistent with the reports of other researchers who have found a shift of dominant neuroelectrical activity from the right to the left hemisphere as the novelty of a visuospatial stimulus decreases.  相似文献   

16.
Strategies of semantic categorization in intact cerebral hemispheres were studied in two experiments by presenting names of typical and atypical category instances to the left visual field (LVF) (right hemisphere) or to the right visual field (RVF) (left hemisphere). The results revealed that the typicality of instances had a large effect on categorization times in the LVF in both experiments, suggesting that the right hemisphere relies strongly on a holistic, similarity-based comparison strategy. In Experiment 1, the typicality effect was weaker in the RVF than in the LVF. In Experiment 2, a typicality effect in the RVF was observed for the "four-footed animal" category but not for the "bird" category. The hypothesis that the left hemisphere employs a strategy based on defining or necessary features is not supported by the observed typicality effect in the "four-footed animal" category. Instead, it is suggested that the left hemisphere may be able to categorize on the basis of prestored instance-category knowledge. When such knowledge is not available (e.g., as for four-footed animals), a similarity-based comparison strategy is employed by the left hemisphere.  相似文献   

17.
It is generally accepted that the anterior temporal lobes support knowledge of famous people. The specific roles of the right and left temporal lobe remain a subject of debate, with some studies suggesting differential roles based on modality (visual versus verbal information) and others category (person knowledge versus general semantics). The present study re-examined performance of semantic dementia patients with predominantly right and predominantly left temporal lobe atrophy on famous face, famous name and general semantic tasks, with the specific aim of testing the hypothesis that the right temporal lobe has a privileged role for person knowledge and the left temporal lobe for general semantic knowledge. Comparisons of performance rankings across tasks showed no evidence to support this hypothesis. By contrast, there was robust evidence from naming, identification and familiarity measures for modality effects: right-sided atrophy being associated with relatively greater impairment for faces and visual tasks and left-sided atrophy for names and verbal tasks. A double dissociation in test scores in two patients reinforced these findings. The data present a challenge for the influential `semantic hub' model, which views the anterior temporal lobes as an area of convergence in which semantic information is represented in amodal form.  相似文献   

18.
We investigated the relative role of the left versus right hemisphere in the comprehension of American Sign Language (ASL). Nineteen lifelong signers with unilateral brain lesions [11 left hemisphere damaged (LHD) and 8 right hemisphere damaged (RHD)] performed three tasks, an isolated single-sign comprehension task, a sentence-level comprehension task involving simple one-step commands, and a sentence-level comprehension task involving more complex multiclause/multistep commands. Eighteen of the participants were deaf, one RHD subject was hearing and bilingual (ASL and English). Performance was examined in relation to two factors: whether the lesion was in the right or left hemisphere and whether the temporal lobe was involved. The LHD group performed significantly worse than the RHD group on all three tasks, confirming left hemisphere dominance for sign language comprehension. The group with left temporal lobe involvement was significantly impaired on all tasks, whereas each of the other three groups performed at better than 95% correct on the single sign and simple sentence comprehension tasks, with performance falling off only on the complex sentence comprehension items. A comparison with previously published data suggests that the degree of difficulty exhibited by the deaf RHD group on the complex sentences is comparable to that observed in hearing RHD subjects. Based on these findings we hypothesize (i) that deaf and hearing individuals have a similar degree of lateralization of language comprehension processes and (ii) that language comprehension depends primarily on the integrity of the left temporal lobe.  相似文献   

19.
In the visual modality, short rhythmic stimuli have been proven to be better processed (sequentially) by the left hemisphere, while longer rhythms appear to be better (holistically) processed by the right hemisphere. This study was set up to see if the same holds in the auditory modality. The rhythm task as originally designed by Seashore was computerized and is part of the Fepsy Neuropsychological battery. This task was performed by 85 patients with intractable temporal lobe epilepsy (left TLE = 32; right TLE = 53) enrolled in the Dutch Collaborative Epilepsy Surgery Program. They performed the task before and 6 months after surgery. The task consists of 30 pairs of rhythmic patterns in 3 series of 10 items. The series contains patterns of 5, 6, or 7 notes. The purpose is to indicate whether the two patterns are the same or different. Reaction times are also measured. If the hypothesis is true, the short-item sequence will be better processed by patients with right temporal lobe epilepsy (nonimpaired left temporal lobe), the longer sequence will be better processed by the left temporal epilepsy group (nonimpaired right temporal lobe). No overall laterality effect on rhythm perception could be found and no difference was found between both test moments. IQ did not correlate with rhythm performance. However, there was an interaction effect of laterality and rhythm length on performance and reaction time. This effect can be explained by the increase after the operation of the score of the left focus group and a decrease in the right focus group on the longer rhythms. This effect was somewhat less strong in the reaction times: a clear tendency for faster reaction times after surgery in the left and longer reaction times in the right focus group. The effect could not be explained for by the difference in extent of resection in either temporal lobe. This study showed that memory for and discrimination of auditory rhythm is dependent on which hemisphere is used in processing. The effect could be demonstrated for the right hemisphere, which uses a holistic processing of stimuli, which outperforms the left in rhythms consisting of a long sequence. In left temporal resections an improvement occurs on the longer rhythms and in right temporal resections the performance on the longest rhythms decreases.  相似文献   

20.
This study investigates the role of the temporal lobes in levels-of-processing tasks (phonetic and semantic encoding) according to the nature of recall tasks (free and cued recall). These tasks were administered to 48 patients with unilateral temporal epilepsy (right "RTLE"=24; left "LTLE"=24) and a normal group (n=24). The results indicated that LTLE patients were impaired for semantic processing (free and cued recall) and for phonetic processing (free and cued recall), while for RTLE patients deficits appeared in free recall with semantic processing. It is suggested that the left temporal lobe is involved in all aspects of verbal memory, and that the right temporal lobe is specialized in semantic processing. Moreover, our data seem to indicate that RTLE patients present a retrieval processing impairment (semantic condition), whereas the LTLE group is characterized by encoding difficulties in the phonetic and semantic condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号