首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aimed flexion movements of the arm of different amplitude and duration were studied. Velocity and acceleration traces of movements with equal duration but different amplitude were equal, apart from a scaling factor (ratio between movement amplitudes). After appropriate scaling, EMG activity of the first agonist burst for these movements superimposed. This was not true for EMG activity in the antagonist muscle.

For movements with equal amplitude, but different duration, the time to peak acceleration was constant for all MT’s. Except for this fact, traces of acceleration, velocity, and agonist activity following the time of peak acceleration were about equal after appropriate scaling in time and amplitude. The integral of EMG activity in the first agonist burst increased linearly with peak velocity. For the antagonist burst, the integrated EMG activity increased more than proportionally.

During movements made as fast as possible, subjects used a different strategy by varying the duration of the accelerating phase for movements of different amplitude. Movement amplitude was achieved by adjusting the duration of the agonist burst and the onset time for the antagonist muscle. Amplitude of the antagonist burst was constant within a narrow range for movements of different amplitude.

These results did not change when the inertial mass was doubled by loading the arm with an additional mass.  相似文献   

2.
A detailed kinematic and electromyographic (EMG) analysis of single degree of freedom timing responses is reported to (a) determine the coherence of kinematic and EMG variability to the reduced timing error variability exhibited with amplitude increments within a given criterion movement time and (b) understand the temporal organization of various movement parameters in simple responses. The data reveal that the variability of kinematic (time to peak acceleration, duration of acceleration phase, time to peak deceleration) and EMG (duration of agonist burst, duration of antagonist burst, time to antagonist burst) timing parameters decreased with increments of average velocity in a manner consistent with the variable timing error. In addition, the coefficient of variation for peak acceleration, peak deceleration, and integrated EMG of the agonist burst followed the same trend. Increasing average movement velocity also led to decreases in premotor and motor reaction times. Overall, the findings suggest a strong coherence between the variability of response outcome, kinematic, and EMG parameters.  相似文献   

3.
A detailed kinematic and electromyographic (EMG) analysis of single degree of freedom timing responses is reported to (a) determine the coherence of kinematic and EMG variability to the reduced timing error variability exhibited with amplitude increments within a given criterion movement time and (b) understand the temporal organization of various movement parameters in simple responses. The data reveal that the variability of kinematic (time to peak acceleration, duration of acceleration phase, time to peak deceleration) and EMG (duration of agonist burst, duration of antagonist burst, time to antagonist burst) timing parameters decreased with increments of average velocity in a manner consistent with the variable timing error. In addition, the coefficient of variation for peak acceleration, peak deceleration, and integrated EMG of the agonist burst followed the same trend. Increasing average movement velocity also led to decreases in premotor and motor reaction times. Overall, the findings suggest a strong coherence between the variability of response outcome, kinematic, and EMG parameters.  相似文献   

4.
The present study was designed to investigate modifications in the triphasic EMG pattern during a forearm-flexion task at maximum speed which required three levels of movement accuracy. 36 subjects participated in 4 training sessions, performing a total of 200 repetitions of each movement. The fastest movement time was associated with the least accurate movement task. Likewise, the slowest movement time was found for the movement requiring the greatest accuracy. Differences in the duration and amplitude of agonist 1 activity, the start of agonist 2 activity, and the start and amplitude of antagonist activity were observed for the three movements. The results indicate that agonist 1 provides a propulsive force to initiate limb movement. The antagonist EMG activity was thought responsible for braking and correcting limb movement. Modifications in agonist 2 activity suggest this burst is related to movement velocity.  相似文献   

5.
Human subjects performed simple flexion and extension movements about the elbow in a visual step-tracking paradigm. Movements were self-terminated. Subjects were instructed to increase movement velocity while maintaining end-point accuracy during practice. The effects of practice on the pattern and variability of EMG activity of the biceps and triceps muscles were studied. Initial movements were performed using reciprocal phasic activation of agonist and antagonist muscles as indicated by surface EMGs. With practice, increases in movement speed were associated with larger agonist and antagonist bursts and an earlier onset of the antagonist burst. Decreased duration of the premovement antagonist silence was also observed during practice. Decreases in variability of movements during practice were not accompanied by equivalent decreases in variability of the associated EMGs. Surprisingly, both agonist and antagonist EMGs were more variable in faster, practiced movements. The combined agonist-antagonist EMG variability depended on both movement speed and trajectory variability. Lower variability in movements in the presence of greater variability in the related EMGs occurred because of linked variations in agonist and antagonist muscle activities. Variations in the first agonist burst were often compensated for by associated variations in the antagonist and late agonist bursts. These linked variations maintained the limb trajectory relatively constant in spite of large variations in the first agonist burst. Modifications to impulse-variability models are therefore needed to explain compensations for variability in accelerative impulses (produced by the first agonist burst) by linked variations in impulses for deceleration (produced by the antagonist and late agonist bursts).  相似文献   

6.
Human subjects performed simple flexion and extension movements about the elbow in a visual step-tracking paradigm. Movements were self-terminated. Subjects were instructed to increase movement velocity while maintaining end-point accuracy during practice. The effects of practice on the pattern and variability of EMG activity of the biceps and triceps muscles were studied. Initial movements were performed using reciprocal phasic activation of agonist and antagonist muscles as indicated by surface EMGs. With practice, increases in movement speed were associated with larger agonist and antagonist bursts and an earlier onset of the antagonist burst. Decreased duration of the premovement antagonist silence was also observed during practice.

Decreases in variability of movements during practice were not accompanied by equivalent decreases in variability of the associated EMGs. Surprisingly, both agonist and antagonist EMGs were more variable in faster, practiced movements. The combined agonist-antagonist EMG variability depended on both movement speed and trajectory variability. Lower variability in movements in the presence of greater variability in the related EMGs occurred because of linked variations in agonist and antagonist muscle activities. Variations in the first agonist burst were often compensated for by associated variations in the antagonist and late agonist bursts. These linked variations maintained the limb trajectory relatively constant in spite of large variations in the first agonist burst. Modifications to impulse-variability models are therefore needed to explain compensations for variability in accelerative impulses (produced by the first agonist burst) by linked variations in impulses for deceleration (produced by the antagonist and late agonist bursts).  相似文献   

7.
Although many studies have examined performance improvements of ballistic movement through practice, it is still unclear how performance advances while maintaining maximum velocity, and how the accompanying triphasic electromyographic (EMG) activity is modified. The present study focused on the changes in triphasic EMG activity, i.e., the first agonist burst (AG1), the second agonist burst (AG2), and the antagonist burst (ANT), that accompanied decreases in movement time and error. Twelve healthy volunteers performed 100 ballistic wrist flexion movements in ten 10-trial sessions under the instruction to "maintain maximum velocity throughout the experiment and to stop the limb at the target as fast and accurately as possible". Kinematic parameters (position and velocity) and triphasic EMG activities from the agonist (flexor carpi radialis) and antagonist (extensor carpi radialis) muscles were recorded. Comparison of the results obtained from the first and the last 10 trials, revealed that movement time, movement error, and variability of amplitudes reduced with practice, and that maximum velocity and time to maximum velocity remained constant. EMG activities showed that AG1 and AG2 durations were reduced, whereas ANT duration did not change. Additionally, ANT and AG2 latencies were reduced. Integrated EMG of AG1 was significantly reduced as well. Analysis of the alpha angle (an index of the rate of recruitment of the motoneurons) showed that there was no change in either AG1 or AG2. Correlation analysis of alpha angles between these two bursts further revealed that the close relationship of AG1 and AG2 was kept constant through practice. These findings led to the conclusion that performance improvement in ballistic movement is mainly due to the temporal modulations of agonist and antagonist muscle activities when maximum velocity is kept constant. Presumably, a specific strategy is consistently applied during practice.  相似文献   

8.
The experiment examined the effects of movement time (MT) and distance on the timing of electromyographic (EMG) activity from an agonist and antagonist muscle during rapid, discrete elbow movements in the horizontal plane. According to impulse-timing theory (Wallace, 1981) MT, not distance moved, should have a pronounced effect on the timing of EMG activity (duration of initial agonist and antagonist burst and time to onset of initial antagonist burst). The levels of MT were 100 and 160 msec and the levels of distance were 27° and 45° of elbow flexion. In general support of impulse-timing theory, the results of the three EMG timing measures showed that MT had a more pronounced effect on these measures than distance. In addition, the timing of EMG activity in relation to total MT remained fairly consistent across the four MT-distance conditions.  相似文献   

9.
The experiment examined the effects of movement time (MT) and distance on the timing at electromyographic (EMG) activity from an agonist and antagonist muscle during rapid, discrete elbow movements in the horizontal plane. According to impulse-timing theory (Wallace, 1981) MT, not distance moved, should have a pronounced effect on the timing of EMG activity (duration of initial agonist and antagonist burst and time to onset of initial antagonist burst). The levels of MT were 100 and 160 msec and the levels of distance were 27 degrees and 45 degrees of elbow flexion. In general support of impulse-timing theory, the results of the three EMG timing measures showed that MT had a more pronounced effect on these measures than distance. In addition, the timing of EMG activity in relation to total MT remained fairly consistent across the four MT-distance conditions.  相似文献   

10.
Fifty-eight healthy subjects made rapid elbow extensions to a target over 54 degrees. Angular acceleration was measured and surface electromyograms (EMGs) were recorded from the antagonistic muscles using monopolar rather than bipolar electrode configurations. Marked individual differences were found in the peak value of the first derivative of acceleration (dAcc/dt_Pk). The dAcc/dt_Pk correlated with both quantitative and qualitative properties of the agonist EMGs, but not with those of the antagonist EMG. The agonist EMGs, integrated until the moment of dAcc/dt_Pk, were positively correlated with dAcc/dt_Pk. The interval between EMG onset and EMG peak decreased with increasing dAcc/dt_Pk. The duration of the initial negative phase in the EMGs, which was considered to index the time required to recruit high-threshold MUs, decreased with increasing dAcc/dt_Pk. The results indicate that the ability to rapidly accelerate the lower arm varies across subjects, probably due in part to individual differences in the neural capacity to drive the agonists.  相似文献   

11.
Rapid human movements can be assimilated to the output of a neuromuscular system with an impulse response modeled by a Delta-Lognormal equation. In such a model, the main assumption concerns the cumulative time delays of the response as it propagates toward the effector following a command. To verify the validity of this assumption, delays between bursts in electromyographic (EMG) signals of agonist and antagonist muscles activated during a rapid hand movement were investigated. Delays were measured between the surface EMG signals of six muscles of the upper limb during single rapid handwriting strokes. From EMG envelopes, regressions were obtained between the timing of the burst of activity produced by each monitored muscle. High correlation coefficients were obtained supporting the proportionality of the cumulative time delays, the basic hypothesis of the Delta-Lognormal model. A paradigm governing the sequence of muscle activities in a rapid movement could, in the long run, be useful for applications dealing with the analysis and synthesis of human movements.  相似文献   

12.
During movement, the intrinsic muscle force-velocity property decreases the net force for the shortening muscle (agonist) and increases it for the lengthening muscle (antagonist). The authors present a quantitative analysis of the effect of that muscle property on activation and force output of the same muscle acting as agonist and antagonist in fast and medium speed goal-oriented movements. They compared biceps activation and force output when that muscle was the agonist in a series of elbow flexions and when it was the antagonist in a series of elbow extensions. They performed the same analysis for the lateral, long, and medial heads of the triceps muscle. Muscle EMG was about 2 times larger and the angular impulse developed by the modeled contractile torque was up to 3 times larger when the muscle or muscles acted as the agonist than when the same muscle or muscles acted as the antagonist in movements with similar kinematics. The large effect of the muscle force-velocity property strongly suggests that the neural controller must account for intrinsic muscle properties to generate movements with a commonly observed bell-shaped velocity profile.  相似文献   

13.
It has often been reported that subjects prefer to use a strategy in which they vary movement velocity and peak amplitude in a linear fashion. In this study, control of velocity and amplitude in rapid reciprocating movements of the interphalangeal joint of the thumb was investigated by examining movement trajectories and patterns of activity in the extensor pollicis longus (EPL) and flexor pollicis longus (FPL) muscles. In controlling either amplitude or peak flexion velocity without constraint, subjects always used a strategy in which peak extension velocity and peak flexion velocity had strong linear correlations with movement amplitude. When they were required to keep either amplitude or peak flexion velocity fixed their movements were still biased toward a strategy in which peak velocity and movement amplitude covaried. It is suggested that the preferred strategy is related to a basic principle of scaling the magnitude and duration of a velocity profile in order to achieve different movement amplitudes.  相似文献   

14.
Transient overshoot (TO), which is assessed as the distance between the movement amplitude and the final position, was measured in a series of rapid, discrete elbow flexion movements performed under different distance and loading conditions by 7 participants. A positive relationship was found between kinematic variables (peak velocity, peak acceleration and deceleration, and the symmetry ratio) and the magnitude of TO, particularly in short movements performed against a light load. The relationships between TO and electromyographic (EMG) variables were low and mainly insignificant. Thus, TO contributes to the variability of rapid, discrete movements and therefore should be taken into account as an additional parameter in studies of the scaling of movement variables with movement mechanical conditions. TO could also represent a consequence of mechanical properties of the single-joint system rather than an independently programmed primary submovement.  相似文献   

15.
Transient overshoot (TO), which is assessed as the distance between the movement amplitude and the final position, was measured in a series of rapid, discrete elbow flexion movements performed under different distance and loading conditions by 7 participants. A positive relationship was found between kinematic variables (peak velocity, peak acceleration and deceleration, and the symmetry ratio) and the magnitude of TO, particularly in short movements performed against a light load. The relationships between TO and electromyographic (EMG) variables were low and mainly insignificant. Thus, TO contributes to the variability of rapid, discrete movements and therefore should be taken into account as an additional parameter in studies of the scaling of movement variables with movement mechanical conditions. TO could also represent a consequence of mechanical properties of the single-joint system rather than an independently programmed primary submovement.  相似文献   

16.
Participants (N = 10) made flexions or extensions about the elbow. Movements either were pointing (i.e., self-terminated) or terminated by impact on a barrier. The author examined how the trajectory and the electromyographic (EMG) patterns varied according to the distance moved, the instruction provided concerning speed, or the type of termination. Variations in kinematics induced by changes in the target distance or the instruction regarding speed were the same for impact and pointing movements. In comparison with a pointing movement of similar distance and speed instruction, an impact movement (a) accelerated longer and reached a higher velocity, (b) had a longer agonist EMG burst, and (c) had a low level of contraction that started slightly after the agonist burst and continued throughout the movement but had little or no antagonist burst. Because the different types of movements required different forces from the muscles, there were systematic, task-specific differences in EMG patterns that reflected task-specific differences in central control. The results of this experiment demonstrate that impact movements share some of the rules used in the control of other tasks, such as pointing and reversing movements. The sharing is not imposed by mechanical or physiological constraints but, rather, represents the imposition of internal constraints.  相似文献   

17.
Participants (N = 10) made flexions or extensions about the elbow. Movements either were pointing (i.e., self-terminated) or terminated by impact on a barrier. The author examined how the trajectory and the electromyographic (EMG) patterns varied according to the distance moved, the instruction provided concerning speed, or the type of termination. Variations in kinematics induced by changes in the target distance or the instruction regarding speed were the same for impact and pointing movements. In comparison with a pointing movement of similar distance and speed instruction, an impact movement (a) accelerated longer and reached a higher velocity, (b) had a longer agonist EMG burst, and (c) had a low level of contraction that started slightly after the agonist burst and continued throughout the movement but had little or no antagonist burst. Because the different types of movements required different forces from the muscles, there were systematic, task-specific differences in EMG patterns that reflected task-specific differences in central control. The results of this experiment demonstrate that impact movements share some of the rules used in the control of other tasks, such as pointing and reversing movements. The sharing is not imposed by mechanical or physiological constraints but, rather, represents the imposition of internal constraints.  相似文献   

18.
Several neurological control strategies for fast head movements are considered using computer simulations of a stretch reflex model. Each control strategy incorporates a different amount of proprioceptive feedback contributing to braking and/or clamping the movement. The model behavior for each control strategy is qualitatively compared to experimental data that includes the agonist and antagonist EMGs, and the head position, velocity, and acceleration. Significance of the study is discussed with respect to the characteristic tri-phasic EMG pattern for fast voluntary movements and the possible roles that the stretch reflex may have in contributing to this pattern of activation.  相似文献   

19.
Much remains to be learned about how agonist and antagonist muscles are controlled during the production of rapid, voluntary movements. In an effort to summarize a wide body of existing knowledge and stimulate future research on this subject, an impulse-timing theory is presented which attempts to predict the activity of reciprocal muscles based on certain characteristics of a movement. The basic tenet of the theory is that variables of movement time, movement distance and inertial load have fairly predictable effects on the underlying muscular activity of the agonist and antagonist muscles during the production of rapid and discrete, voluntary movements. The theory is derived from the kinematic work of Schmidt, Zelaznik, Hawkins, Frank and Quinn (1979) and supporting evidence from studies which have used electromyographic (EMG) recordings of agonist and antagonist muscles during rapid movements. Issues related to synergistic muscle control, central and peripheral control of reciprocal muscle activity, muscle control, and neurological disorder and the relationship between impulse-timing and mass-spring control are discussed in the final section.  相似文献   

20.
Much remains to be learned about how agonist and antagonist muscles are controlled during the production of rapid, voluntary movements. In an effort to summarize a wide body of existing knowledge and stimulate future research on this subject, an impulse-timing theory is presented which attempts to predict the activity of reciprocal muscles based on certain characteristics of a movement. The basic tenet of the theory is that variables of movement time, movement distance, and inertial load have fairly predictable effects on the underlying muscular activity of the agonist and antagonist muscles during the production of rapid and discrete, voluntary movements. The theory is derived from the kinematic work of Schmidt, Zelaznik, Hawkins, Frank, and Quinn (1979) and supporting evidence from studies which have used electromyographic (EMG) recordings of agonist and antagonist muscles during rapid movements. Issues related to synergistic muscle control, central and peripheral control of reciprocal muscle activity, muscle control, and neurological disorder and the relationship between impulse-timing and mass-spring control are discussed in the final section.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号