首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mental representation of ordinal sequences is spatially organized   总被引:11,自引:0,他引:11  
Gevers W  Reynvoet B  Fias W 《Cognition》2003,87(3):B87-B95
In the domain of numbers the existence of spatial components in the representation of numerical magnitude has been convincingly demonstrated by an association between number magnitude and response preference with faster left- than right-hand responses for small numbers and faster right- than left-hand responses for large numbers (Dehaene, S., Bossini, S., & Giraux, P. (1993) The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122, 371-396). Because numbers convey not only real or integer meaning but also ordinal meaning, the question of whether non-numerical ordinal information is spatially coded naturally follows. While previous research failed to show an association between ordinal position and spatial response preference, we present two experiments involving months (Experiment 1) and letters (Experiment 2) in which spatial coding is demonstrated. Furthermore, the response-side effect was obtained with two different stimulus-response mappings. The association occurred both when ordinal information was relevant and when it was irrelevant to the task, showing that the spatial component of the ordinal representation can be automatically activated.  相似文献   

2.
van Dijck JP  Fias W 《Cognition》2011,(1):114-119
Several psychophysical and neuropsychological investigations have suggested that the mental representation of numbers takes the form of a number line along which magnitude is positioned in ascending order according to our reading habits. A longstanding debate is whether this spatial frame is triggered automatically as intrinsic part of the number semantics or whether it constitutes a short-term representation constructed during task execution. Although several observations clearly favor the working memory account, its causal involvement has not yet been demonstrated. In two experiments we show that information stored in working memory get spatially coded in function of its ordinal position in the sequence and that the spatial–numerical associations typically observed in number categorization tasks draw upon this mechanism.  相似文献   

3.
Human adults’ numerical representation is spatially oriented; consequently, participants are faster to respond to small/large numerals with their left/right hand, respectively, when doing a binary classification judgment on numbers, known as the SNARC (spatial–numerical association of response codes) effect. Studies on the emergence and development of the SNARC effect remain scarce. The current study introduces an innovative new paradigm based on a simple color judgment of Arabic digits. Using this task, we found a SNARC effect in children as young as 5.5 years. In contrast, when preschool children needed to perform a magnitude judgment task necessitating exact number knowledge, the SNARC effect started to emerge only at 5.8 years. Moreover, the emergence of a magnitude SNARC but not a color SNARC was linked to proficiency with Arabic digits. Our results suggest that access to a spatially oriented approximate magnitude representation from symbolic digits emerges early in ontogenetic development. Exact magnitude judgments, on the other hand, rely on experience with Arabic digits and, thus, necessitate formal or informal schooling to give access to a spatially oriented numerical representation.  相似文献   

4.
Although several studies have compared the representation of fractions and decimals, no study has investigated whether fractions and decimals, as two types of rational numbers, share a common representation of magnitude. The current study aimed to answer the question of whether fractions and decimals share a common representation of magnitude and whether the answer is influenced by task paradigms. We included two different number pairs, which were presented sequentially: fraction–decimal mixed pairs and decimal–fraction mixed pairs in all four experiments. Results showed that when the mixed pairs were very close numerically with the distance 0.1 or 0.3, there was a significant distance effect in the comparison task but not in the matching task. However, when the mixed pairs were further apart numerically with the distance 0.3 or 1.3, the distance effect appeared in the matching task regardless of the specific stimuli. We conclude that magnitudes of fractions and decimals can be represented in a common manner, but how they are represented is dependent on the given task. Fractions and decimals could be translated into a common representation of magnitude in the numerical comparison task. In the numerical matching task, fractions and decimals also shared a common representation. However, both of them were represented coarsely, leading to a weak distance effect. Specifically, fractions and decimals produced a significant distance effect only when the numerical distance was larger.  相似文献   

5.
When people perform actions, effects associated with the actions are activated mentally, even if those effects are not apparent. This study tested whether sequences of simulations of virtual action effects can be integrated into a meaning of their own. Cell phones were used to test this hypothesis because pressing a key on a phone is habitually associated with both digits (dialing numbers) and letters (typing text messages). In Experiment 1, dialing digit sequences induced the meaning of words that share the same key sequence (e.g., 5683, LOVE). This occurred even though the letters were not labeled on the keypad, and participants were not aware of the digit-letter correspondences. In Experiment 2, subjects preferred dialing numbers implying positive words (e.g., 37326, DREAM) over dialing numbers implying negative words (e.g., 75463, SLIME). In Experiment 3, subjects preferred companies with phone numbers implying a company-related word (e.g., LOVE for a dating agency, CORPSE for a mortician) compared with companies with phone numbers implying a company-unrelated word.  相似文献   

6.
The expression of expert motor skills typically involves learning to perform a precisely timed sequence of movements. Research examining incidental sequence learning has relied on a perceptually cued task that gives participants exposure to repeating motor sequences but does not require timing of responses for accuracy. In the 1st experiment, a novel perceptual-motor sequence learning task was used, and learning a precisely timed cued sequence of motor actions was shown to occur without explicit instruction. Participants learned a repeating sequence through practice and showed sequence-specific knowledge via a performance decrement when switched to an unfamiliar sequence. In the 2nd experiment, the integration of representation of action order and timing sequence knowledge was examined. When either action order or timing sequence information was selectively disrupted, performance was reduced to levels similar to completely novel sequences. Unlike prior sequence-learning research that has found timing information to be secondary to learning action sequences, when the task demands require accurate action and timing information, an integrated representation of these types of information is acquired. These results provide the first evidence for incidental learning of fully integrated action and timing sequence information in the absence of an independent representation of action order and suggest that this integrative mechanism may play a material role in the acquisition of complex motor skills.  相似文献   

7.
Does the perception of objects that are the result of human actions reflect the underlying temporal structure of the actions that gave rise to them? We tested whether the temporal order of letter strokes influences letter recognition. In three experiments, participants were asked to identify letters that temporally unfolded as an additive sequence of letter strokes, either consistent or inconsistent with common writing action. Participants were significantly faster to identify letters from consistent temporal sequences, indicating that the initial part of the sequence contained sufficient information to prime letter recognition. We suggest that letter perception reflects the temporal structure of letter production; in other words, Simon sees as Simon does.  相似文献   

8.
Does the perception of objects that are the result of human actions reflect the underlying temporal structure of the actions that gave rise to them? We tested whether the temporal order of letter strokes influences letter recognition. In three experiments, participants were asked to identify letters that temporally unfolded as an additive sequence of letter strokes, either consistent or inconsistent with common writing action. Participants were significantly faster to identify letters from consistent temporal sequences, indicating that the initial part of the sequence contained sufficient information to prime letter recognition. We suggest that letter perception reflects the temporal structure of letter production; in other words, Simon sees as Simon does.  相似文献   

9.
How does learning the timing of actions influence our ability to learn the order of actions? A sequence of responses cued by spatial stimuli was learned in a serial reaction time task where the response-to-stimulus intervals (RSIs) were random, constant, or followed a fixed sequence. In this final sequenced-RSI condition, the response and RSI sequences were consistently matched in phase and could be integrated into a common sequence representation. The main result was that the response sequence was learned to a similar degree in all RSI training conditions, indicating that neither the predictability of RSIs nor the integration of the phase-matched response and timing sequences benefited learning of the response sequence. Nevertheless, temporal learning and integration speeded up performance without strengthening the representation of response order.  相似文献   

10.
Across a series of four experiments with 3‐ to 4‐year‐olds we demonstrate how cognitive mechanisms supporting noun learning extend to the mapping of actions to objects. In Experiment 1 (n = 61) the demonstration of a novel action led children to select a novel, rather than a familiar object. In Experiment 2 (n = 78) children exhibited long‐term retention of novel action‐object mappings and extended these actions to other category members. In Experiment 3 (n = 60) we showed that children formed an accurate sensorimotor record of the novel action. In Experiment 4 (n = 54) we demonstrate limits on the types of actions mapped to novel objects. Overall these data suggest that certain aspects of noun mapping share common processing with action mapping and support a domain‐general account of word learning.  相似文献   

11.
A large body of evidence suggests that action execution and action observation share a common representational domain. To date, little is known about age-related changes in these action representations that are assumed to support various abilities such as the prediction of observed actions. The purpose of the present study was to investigate (a) how age affects the ability to predict the time course of observed actions; and (b) whether and to what extent sensorimotor expertise attenuates age-related declines in prediction performance. In a first experiment, older adults predicted the time course of familiar everyday actions less precisely than younger adults. In a second experiment, younger and older figure skating experts as well as age-matched novices were asked to predict the time course of figure skating elements and simple movement exercises. Both young age and sensorimotor expertise had a positive influence on prediction performance of figure skating elements. The expertise-related benefit did not show a transfer to movement exercises. Together, the results suggest a specific decline of action representations in the aging mind. However, extensive sensorimotor experience seems to enable experts to represent actions from their domain of expertise more precisely even in older age.  相似文献   

12.
Recent studies showed that action observation activates neural circuits used in performing the same action and facilitates execution of a similar motor program. This system for direct mapping of observed actions onto observer’s own motor representation is considered critical for human imitation capabilities. The present study shows that observing a pointing action activates a representation of that action in anatomical space, irrespectively of whether the action is shown in allocentric or egocentric perspective. This finding is at odds with the studies on imitation which showed that humans tend to imitate in a spatially compatible (specular) way, as if looking in a mirror. Our results suggest that shared representations for actions are organized in the same spatial coordinates; however, a transformation of this representation might be required for imitation tasks in order to accommodate the goals of imitative action.  相似文献   

13.
ABSTRACT

Researchers have begun to delineate the precise nature and neural correlates of the cognitive processes that contribute to motor skill learning. The authors review recent work from their laboratory designed to further understand the neurocognitive mechanisms of skill acquisition. The authors have demonstrated an important role for spatial working memory in 2 different types of motor skill learning, sensorimotor adaptation and motor sequence learning. They have shown that individual differences in spatial working memory capacity predict the rate of motor learning for sensorimotor adaptation and motor sequence learning, and have also reported neural overlap between a spatial working memory task and the early, but not late, stages of adaptation, particularly in the right dorsolateral prefrontal cortex and bilateral inferior parietal lobules. The authors propose that spatial working memory is relied on for processing motor error information to update motor control for subsequent actions. Further, they suggest that working memory is relied on during learning new action sequences for chunking individual action elements together.  相似文献   

14.
Five experiments explored whether fluency in musical sequence production relies on matches between the contents of auditory feedback and the planned outcomes of actions. Participants performed short melodies from memory on a keyboard while musical pitches that sounded in synchrony with each keypress (feedback contents) were altered. Results indicated that altering pitch contents can disrupt production, but only when altered pitches form a sequence that is structurally similar to the planned sequence. These experiments also addressed the role of musical skill: Experiments 1 and 3 included trained pianists; other experiments included participants with little or no musical training. Results were similar across both groups with respect to the disruptive effects of auditory feedback manipulations. These results support the idea that a common hierarchical representation guides sequences of actions and the perception of event sequences and that this coordination is not acquired from learned associations formed by musical skill acquisition.  相似文献   

15.
It is widely believed that numbers are spatially represented from left to right on the mental number line. Whether this spatial format of representation is specific to numbers or is shared by non-numerical ordered sequences remains controversial. When healthy participants are asked to randomly generate digits they show a systematic small-number bias that has been interpreted in terms of “pseudoneglect in number space”. Here we used a random generation task to compare numerical and non-numerical order. Participants performed the task at three different pacing rates and with three types of stimuli (numbers, letters, and months). In addition to a small-number bias for numbers, we observed a bias towards “early” items for letters and no bias for months. The spatial biases for numbers and letters were rate independent and similar in size, but they did not correlate across participants. Moreover, letter generation was qualified by a systematic forward direction along the sequence, suggesting that the ordinal dimension was more salient for letters than for numbers in a task that did not require its explicit processing. The dissociation between numerical and non-numerical orders is consistent with electrophysiological and neuroimaging studies and suggests that they rely on at least partially different mechanisms.  相似文献   

16.
There are cells in our motor cortex that fire both when we perform and when we observe similar actions. It has been suggested that these perceptual‐motor couplings in the brain develop through associative learning during correlated sensorimotor experience. Although studies with adult participants have provided support for this hypothesis, there is no direct evidence that associative learning also underlies the initial formation of perceptual–motor couplings in the developing brain. With the present study we addressed this question by manipulating infants’ opportunities to associate the visual and motor representation of a novel action, and by investigating how this influenced their sensorimotor cortex activation when they observed this action performed by others. Pre‐walking 7–9‐month‐old infants performed stepping movements on an infant treadmill while they either observed their own real‐time leg movements (Contingent group) or the previously recorded leg movements of another infant (Non‐contingent control group). Infants in a second control group did not perform any steps and only received visual experience with the stepping actions. Before and after the training period we measured infants’ sensorimotor alpha suppression, as an index of sensorimotor cortex activation, while they watched videos of other infants’ stepping actions. While we did not find greater sensorimotor alpha suppression following training in the Contingent group as a whole, we nevertheless found that the strength of the visuomotor contingency experienced during training predicted the amount of sensorimotor alpha suppression at post‐test in this group. We did not find any effects of motor experience alone. These results suggest that the development of perceptual–motor couplings in the infant brain is likely to be supported by associative learning during correlated visuomotor experience.  相似文献   

17.
Modern technologies progressively create workplaces in which the execution of movements and the observation of their consequences are spatially separated. Challenging workplaces in which users act via technical equipment in a distant space include aviation, applied medical engineering and virtual reality. When using a tool, proprioceptive/tactile feedback from the moving hand (proximal action effect) and visual feedback from the moving effect point of the tool, such as the moving cursor on a display (the distal action effect) often do not correspond or are even in conflict. If proximal and distal feedback were equally important for controlling actions with tools, this discrepancy would be a constant source of interference. The human information processing system solves this problem by favoring the intended distal action effects while attenuating or ignoring proximal action effects. The study presents an overview of experiments aiming at the underlying motor and cognitive processes and the limitations of visual predominance in tool actions. The main findings are, that when transformations are in effect the awareness of one's own actions is quite low. This seems to be advantageous when using tools, as it allows for wide range of flexible sensorimotor adaptations and – may be more important – it evokes the feeling of being in control. Thus, the attenuation of perceiving one's own proximal action effects is an important precondition for using tools successfully. However, the ability to integrate discordant perception-action feedback has limits, especially, but not only, with complex transformations. When feature overlap between vision and proprioception is low, and when the existence of a transformation is obvious proximal action effects come to the fore and dominate action control in tool actions. In conclusion action–effect control plays an important role in understanding the constraints of the acquisition and application of tool transformations.  相似文献   

18.
Numbers are fundamental entities in mathematics, but their cognitive bases are unclear. Abundant research points to linear space as a natural grounding for number representation. But, is number representation fundamentally spatial? We disentangle number representation from standard number-to-line reporting methods, and compare numerical estimations in educated participants using line-reporting with three nonspatial reporting conditions (squeezing, bell-striking, and vocalizing). All three cases of nonspatial-reporting consistently reproduced well-established results obtained with number-line methods. Furthermore, unlike line-reporting—and congruent with the psychophysical Weber–Fechner law—nonspatial reporting systematically produced logarithmic mappings for all nonsymbolic stimuli. Strikingly, linear mappings were obtained exclusively in conditions with culturally mediated elements (e.g., words). These results suggest that number representation is not fundamentally spatial, but builds on a deeper magnitude sense that manifests spatially and nonspatially mediated by magnitude, stimulus modality, and reporting condition. Number-to-space mappings—although ubiquitous in the modern world—do not seem to be rooted directly in brain evolution but have been culturally privileged and enhanced.  相似文献   

19.
We examined the role of action in motor and perceptual timing across development. Adults and children aged 5 or 8 years old learned the duration of a rhythmic interval with or without concurrent action. We compared the effects of sensorimotor versus visual learning on subsequent timing behaviour in three different tasks: rhythm reproduction (Experiment 1), rhythm discrimination (Experiment 2) and interval discrimination (Experiment 3). Sensorimotor learning consisted of sensorimotor synchronization (tapping) to an isochronous visual rhythmic stimulus (ISI = 800 ms), whereas visual learning consisted of simply observing this rhythmic stimulus. Results confirmed our hypothesis that synchronized action during learning systematically benefitted subsequent timing performance, particularly for younger children. Action‐related improvements in accuracy were observed for both motor and perceptual timing in 5 years olds and for perceptual timing in the two older age groups. Benefits on perceptual timing tasks indicate that action shapes the cognitive representation of interval duration. Moreover, correlations with neuropsychological scores indicated that while timing performance in the visual learning condition depended on motor and memory capacity, sensorimotor learning facilitated an accurate representation of time independently of individual differences in motor and memory skill. Overall, our findings support the idea that action helps children to construct an independent and flexible representation of time, which leads to coupled sensorimotor coding for action and time.  相似文献   

20.
In a logographic language culture,repeated (hand)writing is a common memory strategy for learning letters and Chinese characters. The purpose of this paper is to determine whether this strategy facilitates children’s memory for pseudologographic characters and foreign letters. It also explores which aspect of writing, the use of stroke orders or the writing action itself, is responsible for the effect. First, third, and fifth grade Japanese children participated in the study. Results showed that, for all the subjects, characters and letters were better recalled when learned by writing rather than by looking only (Experiments 1 and 4). The advantage of writing was decreased, however, when the proper writing action prevented (i.e., when subjects were instructed to trace or write without feedback; Experiments 3 and 4) but not when the proper stroke orders were prevented (i.e., when subjects were instructed to write in reverse or random orders; Experiment 2). The results indicate that the writing action, rather than the use of stroke orders, is responsible for the effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号