首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Transient deficits have been reported after unilateral entorhinal cortex (EC) lesion. To determine whether there is a more persistent deficit, adult male Sprague–Dawley rats with electrolytic or sham lesions of the left entorhinal cortex were examined on acquisition of a modified working memory task in the Morris water maze. This delayed matching-to-sample task, with a 1-h intertrial interval, reveals a significant deficit in total distance to platform in both presentation (Trial 1) and matching (Trial 2) in the rats with entorhinal lesions. We have also found that this test can be used to assess significant deficits in perseveration (repeated nonproductive movement) in rats with entorhinal lesions. The deficits can be seen up to 16 days postinjury. Administration of ganglioside GM1 resulted in a moderate improvement in performance in both water maze measures analyzed. All groups (sham operated, lesion with saline treatment, and lesion with ganglioside GM1 treatment) were given three other tests, which were used to evaluate possible contributing factors to deficient water maze performance. A one-trial test for exploration of novel objects revealed no significant, simple working memory deficit in any group. Plus maze testing, to assess possible differences in levels of anxiety or increased activity as a component of water maze performance, also revealed no differences in the three groups. All groups were also similar in motor activity, shown by monitoring of activity levels. The worsened water maze performance observed in rats with EC lesion may be related to deficits in working memory ability within the framework of acquisition of a more complex spatial learning task.  相似文献   

2.
The basolateral amygdala (BLA) is extensively implicated in emotional learning and memory. The current study investigated the contribution of cholinergic afferents to the BLA from the nucleus basalis magnocellularis in influencing aversive learning and memory. Sprague-Dawley rats were given permanent unilateral phthalic acid (300 ng) lesions of the nucleus basalis magnocellularis and were chronically implanted with cannulas aimed at the ipsilateral BLA. Lesioned rats showed a pronounced inhibitory avoidance task retention deficit that was attenuated by acute posttraining infusions of the muscarinic cholinergic agonist oxotremorine (4 ng) or the indirect agonist physostigmine (1 microg) into the BLA. Continuous multiple-trial inhibitory avoidance training and testing revealed that lesioned rats have a mild acquisition deficit, requiring approximately 1 additional shock to reach the criterion, and a pronounced consolidation deficit as indicated by a shorter latency to enter the shock compartment on the retention test. Because lesioned rats did not differ from sham-operated controls in performance on a spatial water maze task or in shock sensitivity, it is not likely that the memory impairments produced by the phthalic acid lesions are due to any general sensory or motor deficits. These findings suggest that the dense cholinergic projection from the nucleus basalis magnocellularis to the BLA is involved in both the acquisition and the consolidation of the aversive inhibitory avoidance task.  相似文献   

3.
Using a radial maze task and different postoperative recovery periods, this experiment assessed and compared the reference and working memory performances of adult Long-Evans male rats subjected to entorhinal cortex, fimbria-fornix, and hippocampus lesions. Sham-operated rats were used as controls. In order to see whether the duration of the postsurgical recovery period would influence acquisition of the complex radial maze task, training began 1 month following surgery (Delay 1) for half the rats in each group, while for the other half training was started 6.5 months following surgery (Delay 2). The results indicated that at both recovery periods the entorhinal cortex lesions failed to affect either working or reference memory in the spatial task. Conversely, both fimbria-fornix and hippocampus lesions impaired both reference and working memory. While the reference memory deficit was generally similar in both fimbria-fornix and hippocampal lesion groups, analysis of the results for working memory indicated that at the longer delay rats with fimbria-fornix lesions were still impaired but in animals that had the hippocampus removed, working memory did not differ from that of controls. These results suggest that there was some recovery in those rats with hippocampal lesions (e.g., on the working memory task) but both hippocampal and fimbria-fornix animals were still impaired compared to controls when training was delayed 6.5 months following the operations.  相似文献   

4.
In order to assess effects of global ischemia in tasks of spatial learning and working memory, male Wistar rats were subjected to four vessel occlusion (4 VO) for periods of 5, 10, and 20 min and compared with sham-operated controls over four test phases, from 6 to 54 weeks after surgery. Rats were assessed on acquisition in the water maze, a task that is sensitive to ischemic impairments, before testing in Skinner box and water maze working memory tasks, which both require the short-term storage of information, but make different demands on spatial information processing. Phases 1 and 3 assessed spatial learning in a standard water maze procedure (12 and 10 training days, 2 trials/day with a 10-min intertrial interval: ITI). Phase 2 involved training and testing in delayed non-matching-to-position task in the Skinner box, with delays of 2–10 s between the information and choice stages. Phase 4 examined working memory in a water maze delayed matching-to-position task with 4 trials/day, an ITI of 30 s, and a novel platform position on each day. Ischemic rats showed duration-related impairments in water maze acquisition and working memory, but not in the less spatially demanding Skinner box task. Since water maze acquisition deficits were seen both before and after testing in the Skinner box the lack of effect cannot be attributed to time or to prior training. Ischemic deficits were more marked in Phase 3 than in Phase 1 of acquisition, suggesting that impairment may be progressive. Histological assessment showed that cell loss was largely confined to the hippocampal CA1 field and was linearly related to duration of occlusion. At the maximal level of loss (5.7 mm before the interaural line) the 20-min group showed 90% loss, the 10-min group 60% loss, and the 5-min group, which did not differ from controls, less than 10% loss. Only the 20-min group showed significant damage beyond the CA1 field, ranging from 30–40% loss in the CA3 field to 5% loss in one striatal area. No cortical damage was seen. The extent of CA1 cell loss correlated modestly with water maze acquisition (Phase 3) and working memory scores, but not with trials to criterion in the Skinner box task. There were significant correlations between different measures both within and between water maze tasks, but not Skinner box tasks, suggesting that the two types of procedure engaged different cognitive processes. The results indicate that the intrahippocampal damage induced by 4 VO impaired tasks which required processing of allocentric spatial information, but did not impair the storage of limited spatial information in working memory.  相似文献   

5.
We have previously reported that electrolytic lesions of the nucleus medianus raphe (MR) produce a deficit in the acquisition of an 8-arm radial maze task (Wirtshafter and Asin 1983). In an attempt to determine whether or not this deficit is secondary to serotonin depletion resulting from the lesion, we investigated and compared the effects of electrolytic and 5,7-dihydroxytryptamine (5,7-DHT) lesions of the MR on the acquisition of the radial maze task. Although forebrain serotonin levels after 5,7-DHT injections were reduced as much as those following electrolytic lesions, only rats with an electrolytic MR lesion were impaired on the acquisition of both a free-running maze task and on a related task, where animals were replaced into the same arm between arm choices. In contrast, 5,7-DHT-treated rats were unimpaired on both tasks compared to an ascorbate-injected control group. These findings provide further evidence that most of the profound behavioral deficits shown by rats with electrolytic MR damage are not due to serotonin depletion and are consistent with the results of other studies indicating strong similarities between the behavioral effects of limbic and MR lesions.  相似文献   

6.
We studied the effects of a selective lesion in rats, with 192-IgG-saporin, of the cholinergic neurons located in the medial septum/diagonal band (MSDB) complex on the acquisition of classical and instrumental conditioning paradigms. The MSDB lesion induced a marked deficit in the acquisition, but not in the retrieval, of eyeblink classical conditioning using a trace paradigm. Such a deficit was task-selective, as lesioned rats were able to acquire a fixed-interval operant conditioning as controls, and was not due to nonspecific motor alterations, because spontaneous locomotion and blink reflexes were not disturbed by the MSDB lesion. The deficit in the acquisition of a trace eyeblink classical conditioning was reverted by the systemic administration of carbachol, a nonselective cholinergic muscarinic agonist, but not by lobeline, a nicotinic agonist. These results suggest a key role of muscarinic denervation on the acquisition of new motor abilities using trace classical conditioning procedures. It might also be suggested that muscarinic agents would be useful for the amelioration of some associative learning deficits observed at early stages in patients with Alzheimer's disease.  相似文献   

7.
We investigated whether the pretreatment with vitamins E (alpha-tocopherol) and C (ascorbic acid) would act on ovariectomy-induced memory deficits in Morris water maze tasks. Adult female Wistar rats were divided into three groups: (1) naive (control), (2) sham (submitted to surgery without removal of ovaries) and (3) ovariectomized. Thirty days after surgery, they were trained in the Morris water maze in order to verify ovariectomy effects both on reference and working memory tasks. Results show that ovariectomized rats presented impairment in spatial navigation in the acquisition phase, as well as in the time spent in target quadrant and in the latency to cross over the location of the platform in test session, when compared to naive and sham groups (controls), in the reference memory task. Ovariectomy did not affect performance in the working memory task. Confirming our hypothesis, ovariectomized rats pretreated for 30 days with vitamins E and C had those impairments prevented. We conclude that ovariectomy significantly impairs spatial reference learning/memory and that pretreatment with vitamins E and C prevents such effect. Assuming this experimental memory impairment might mimic, at least in part, the cognitive deficit sometimes present in the human condition of lack of reproductive hormones, our findings lend support to a novel therapeutic strategy, based on vitamins E and C, to cognitive impairments in post-menopausal women.  相似文献   

8.
The effects of the benzodiazepine receptor antagonist, beta-carboline ZK 93,426 treatment were studied both in NB-lesioned (ibotenic acid) and in unoperated Kuo-Wistar rats in a water maze task. The ZK 93,426 administered in the doses of 1 and 5 mg/kg, 30 min prior to the testing in a water maze apparatus, attenuated the NB lesion-induced spatial navigation deficit, although it had no effect on the performance of unoperated rats. The results suggest functional interactions between GABAergic system and ibotenic acid-induced lesion of the basal forebrain in rats.  相似文献   

9.
In the present experiments, we investigated the effects of several commonly employed antiepileptic drugs on the performance of adult rats in a Morris water maze task. We found that phenytoin treatment produced the most deleterious performance impairments across all days of training, and that these performance deficits are not likely due to any general sensorimotor impairments. Carbamazepine had milder, but detectable negative effects, as carbamazepine-treated animals exhibited initial acquisition deficits, but rapidly achieved escape levels comparable to controls. In marked contrast, valproate and ethosuximide had no detectable effects on learning in the water maze. These results parallel previous findings in rats treated with these compounds and tested in an instrumental learning task, and are in general agreement with the human clinical literature. To the extent that one might wish to minimize learning deficits associated with maintenance on antiepileptic drugs, phenytoin is definitely not the treatment of choice, while valproate or ethosuximide are apparently much less disruptive.  相似文献   

10.
In the present experiments, we investigated the effects of several commonly employed antiepileptic drugs on the performance of adult rats in a Morris water maze task. We found that phenytoin treatment produced the most deleterious performance impairments across all days of training, and that these performance deficits are not likely due to any general sensorimotor impairments. Carbamazepine had milder, but detectable negative effects, as carbamazepine-treated animals exhibited initial acquisition deficits, but rapidly achieved escape levels comparable to controls. In marked contrast, valproate and ethosuximide had no detectable effects on learning in the water maze. These results parallel previous findings in rats treated with these compounds and tested in an instrumental learning task, and are in general agreement with the human clinical literature. To the extent that one might wish to minimize learning deficits associated with maintenance on antiepileptic drugs, phenytoin is definitely not the treatment of choice, while valproate or ethosuximide are apparently much less disruptive.  相似文献   

11.
The aim of the present experiment was to study the effects of a low dose (0.001 mg/kg) of guanfacine, alpha-2 agonist, on the acquisition and retention of a water maze task measuring spatial reference memory in young and aged rats. Aged rats were impaired in the acquisition of this task. Both young and aged rats treated with guanfacine had shorter escape latencies than their saline treated counterparts. However, guanfacine treatment increased the speed of swimming in aged rats. According to the results of the probe trial, guanfacine may slightly improve the acquisition/retention of water maze task in young rats, whereas it may slightly impair the acquisition/retention of aged rats. The results suggest that a low dose of guanfacine administered peripherally may have different effects on young and aged rats in water maze performance, and a low dose of guanfacine does not improve spatial reference memory in aged rats.  相似文献   

12.
A reduction in the activity of cytochrome oxidase, a respiratory chain enzyme, has been recently identified in mitochondria from blood platelets and postmortem brain tissue from Alzheimer's disease (AD) patients. We have developed an animal model of this deficit in rats by chronic subcutaneous infusion of sodium azide, a selective inhibitor of cytochrome oxidase, delivered via Alzet 2ML4 osmotic minipumps. In previous work, azide-treated rats were impaired in an appetitively motivated spatial learning task, the radial arm maze. In the present investigation, we tested male Sprague-Dawley rats (350-400 g), which were tonically infused with azide or saline, on an aversively motivated spatial task, the Morris water maze. Azide-treated rats were impaired on both acquisition and retention of this task, without showing evidence of a motor impairment. Thus, the present results are consistent with previous findings showing that chronic azide treatment produces a learning and memory deficit. These findings strengthen the hypothesis that azide treatment in rats produces a useful animal model of some aspects of AD.  相似文献   

13.
14.
In a previous study, adult male Sprague-Dawley rats with unilateral, electrolytic entorhinal cortex lesions showed significant deficits in acquisition of a water maze task that measured working memory. The 10 days of testing used two trials per day with an intertrial interval of 1 h, and the rats with entorhinal damage were impaired in total distance to the platform in both trials. In the present retention study, rats who learned the same task prior to injury and were then retested for 5 days after lesion showed only a first day deficit in total distance to platform in the second trial. Analysis of swim patterns indicated that rats with unilateral entorhinal lesions used an altered strategy in retention testing to find the platform in the second trial of each day and incorporated the use of headings appropriate for Trial 1 only. This altered or compensatory strategy was not the optimum choice for problem solution. Although the rats then were able to switch headings and find the platform without significant impairment in total distance to platform on days 2–5 of testing, the use of an initial incorrect strategy indicated subtle residual deficits in cue integration and use of working memory.  相似文献   

15.
Effects of ketamine on tunnel maze and water maze performance in the rat   总被引:1,自引:0,他引:1  
The NMDA receptor, which has been implicated in memory formation, is noncompetitively blocked by ketamine. The present study examines the effect of ketamine (0, 3, 6, 12, and 25 mg/kg body wt; ip) on tunnel maze and water maze performance in Wistar rats. In the hexagonal tunnel maze (HTM) high doses of ketamine (12 and 25 mg/kg) decreased locomotor activity. Moreover, ketamine induced perimeter walking (6, 12, and 25 mg/kg) and attenuated exploratory efficiency (25 mg/kg). When the HTM was converted into a modified six-arm radial maze, ketamine impaired short-term but not long-term memory. In the Morris water maze, rats injected with ketamine (12 and 25 mg/kg) acquired a spatial navigation task more slowly than controls. When the escape platform was removed, the drug-treated rats did not preferentially search for it in the area where the platform had been during the acquisition phase. However, when the escape platform was visible, no differences in the performance of ketamine-treated and control rats could be found. In summary, ketamine seems to attenuate some but not all forms of learning in the tunnel maze and it impairs the acquisition of a spatial navigation task.  相似文献   

16.
The involvement of the cerebellum in procedural learning is demonstrated in visuomotor-sequence tasks, as lesion of this area impedes the acquisition of new sequences. Likewise, the lateral cerebellum appears to be involved in the acquisition of new sequences, but not in the execution of learned sequences. In contrast, the dentate nucleus participates only in the execution of learned visuomotor sequences. In previous studies, disruption of the procedural elements of spatial navigation following cerebellar or dentate lesions has been reported. However, as praxic strategies (egocentric learning) are included in the procedural elements of the navigation, the participation of the cerebellar-dentate nucleus in egocentric procedural learning processes has not been evaluated. Therefore, using colchicine, bilateral lesions were made in the cerebellar-dentate nucleus of Sprague-Dawley rats, and these rats were given two tasks: egocentric-based motor sequence learning in the radial maze and egocentric navigation in the Morris water maze. The lesioned rats were unable to use the sequential information in the short term and showed delayed long-term acquisition, which was probably due to the inability to detect the sequence. No effects on the egocentric navigation task were observed. Our results indicate that the cerebellar-dentate nucleus is involved in the detection of egocentric sequential information but not in the use of this information in the navigation process. Further, they show differential involvement of the cerebellar-dentate nucleus in the execution of learned visuomotor sequences, as the dentate lesion disrupted the acquisition of new egocentric-motor-based sequences.  相似文献   

17.
Male Sprague-Dawley rats implanted with bilateral intracerebral guide cannulae were trained in the standard hidden platform version of the Morris water maze and given immediate posttraining infusions of the D2 dopamine receptor antagonist sulpiride (10.0 or 100.0 ng/side) or saline vehicle into the posteroventral caudate-putamen. Retention was tested 2 days later with a probe trial. Sulpiride-treated rats spent less time swimming near the trained platform location and more time in the periphery of the maze than controls, although their latency to reach the trained platform location was not significantly affected. The pattern of results suggests that whereas the posteroventral caudate-putamen seems to be involved in consolidation of memory in the Morris water maze, it may be involved in memory for procedural aspects of the task in a manner distinct from that of other brain regions such as the hippocampus.  相似文献   

18.
Two experiments were conducted to compare the effects of fornix/fimbria and caudate-putamen lesions in Long–Evans hooded rats (Rattus norvegicus) trained on two water maze tasks that differed in the type of spatial localization required for optimum solution. In Experiment 1, the lesioned rats and surgical controls were trained on the standard place task in the water maze (Morris, 1981) and given two postacquisition tests (a platform removal probe and platform relocation test). In Experiment 2, rats with similar lesions and control rats were trained on a modified cue navigation task. Fornix/fimbria lesions impaired a late stage of place task acquisition but did not impair acquisition of the cue task. Caudate-putamen lesions resulted in a severe place acquisition impairment and a transient cue acquisition impairment, both of which were characterized by an initial tendency to swim near the wall of the pool. Post-hoc analyses of the direction and angles of departure from the start points suggested that rats with fornix/fimbria lesions used non-allocentric spatial strategies to solve the place task. These rats also demonstrated a significantly weakened spatial bias for the former training quadrant on the platform removal probe and reduced flexibility in navigating to a novel platform location on the platform relocation test. In contrast, rats with caudate-putamen lesions showed a significant spatial bias for the former training quadrant but failed to cross the exact location within the quadrant where the platform was formerly positioned. The results suggest that the hippocampus mediates the allocentric spatial component of the water maze place task while the dorsomedial striatum may play an important role in the acquisition of the procedural aspects of both place and cue versions of the task.  相似文献   

19.
Spatial alternation performance in rats is usually evaluated with the T-Maze. The first aim of this study was to analyze the effect of a selective lesion of medial prefrontal cortex (mPFC) on performance in a T-maze. Second, we wanted to validate a new test using alternation in a water maze (AWM). The mPFC of 21 male Sprague-Dawley rats was lesioned bilaterally using in situ microinjection of ibotenic acid. Thirteen control rats received injections of the vehicle only. Results show that mPFC lesioned rats were significantly impaired in the T-Maze as well as in the AWM compared to controls. These results validate the AWM as a frontal cortex dependent task probing working memory and/or behavioral flexibility. We suggest that the AWM may be more powerful than the T-maze as an investigational tool, given that is can be easily compared to other water maze tasks that evaluate other (nonfrontal) cognitive modules.  相似文献   

20.
Male rats, 90-100 days old, with frontal cortex lesions were given either subcutaneous sterile water (SW) as a vehicle control or 1, 10, or 100 micrograms of BIM-22015 every other day for 20 days. Brain-injured subjects tested in the Morris water maze with either 10 micrograms BIM-22015 or SW took significantly more trials than sham-operated rats to locate a submerged platform eight consecutive times within 60 s. The animals given 1 or 100 micrograms BIM-22015 took significantly fewer trials to reach criterion than brain-injured animals in the other drug treatment groups. On a percentage of savings, measured 8 days after reaching criterion, the brain-injured subjects given 1, 10, or 100 micrograms BIM-22015 did not differ from sham-operated rats. In contrast, the brain-injured animals given SW took longer to find the submerged platform than they did during the initial training. To assess long-term effects of the ACTH analog treatment, rats were trained on a delayed spatial alternation task 30 days after receiving the last injection. On this task, brain-injured rats treated with the 10-micrograms dose performed significantly better than those given sterile water. Acetylcholinesterase (AChE)-labeled neurons counted in the nucleus basalis magnocellularis indicated that rats with frontal cortex damage given the 10-micrograms treatment did not differ from the sham controls and had significantly more AChE-positive neurons than injured counterparts treated with SW or 100 micrograms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号