首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adult male Wistar rats were bilaterally implanted with indwelling cannulae in four different coordinates of the cingulate cortex: (1) the anterior cingulate (AC), (2) the rostral region of the posterior cingulate (RC), (3) the upper portion of the caudal region of the posterior cingulate (UC), and (4) the lower portion of the caudal region of the posterior cingulate (LC). After recovery, animals were trained in a step-down inhibitory avoidance task (3.0-s, 0.4-mA foot shock). Either immediately, or 90 or 180 min after training, animals received a 0.5-microl infusion of vehicle (phosphate buffer, pH 7.4), of muscimol (0.5 microg), or of AP5 (5.0 microg). Retention testing was carried out 24 h after training. Muscimol was amnestic when given into any of the three coordinates of the posterior cingulate cortex 90 min after training, and when given into LC immediately post-training. In addition, AP5 was amnestic when given into UC 90 min post-training, but not when given into any other region and/or at any other time. None of the treatments had any effect when given into AC. The results suggest that memory processing of the inhibitory avoidance task is regulated by the posterior but not by the anterior cingulate cortex, through muscimol-sensitive synapses, relatively late after training. AP5-sensitive synapses appear to play a very limited role in these processes, restricted to UC.  相似文献   

2.
Wistar rats with cannulae bilaterally implanted in the CA1 region of the dorsal hippocampus were trained in a step-down inhibitory avoidance task. Through these cannulae they received an infusion of 28 or 280 ng per side of the L-type voltage-dependent calcium channel antagonist nifedipine, or of its vehicle (20% dimethyl sulfoxide in saline). The two doses of the drug were studied by administration 0 or 30 min after training; in addition, the higher dose was studied by infusion 10 min before training. A retention test was carried out 24 h after the training session. The highest dose of nifedipine administered 0 min post-training enhanced test session performance of the animals compared to the control group; the effect of the lower dose was not statistically significant. There was no effect of the drug given 30 min post-training or 10 min pretraining. Despite the inability to discriminate direct neural from indirect vascular effects, these results are consistent with previous reports on nootropic actions of the dihydropyridine class of calcium channel blockers. The data are at variance with the amnestic effect of intrahippocampal nifedipine described by Lee and Lin (1991,Life Sciences,48,1333–1340), which may be attibuted to the different range of doses studied here. This might resemble the inverted U-shaped dose–response curve observed with another dihydropyridine, nimodipine, by other authors.  相似文献   

3.
Long-term habituation to a novel environment is one of the most elementary forms of nonassociative learning. Here we studied the effect of pre- or posttraining intrahippocampal administration of drugs acting on specific molecular targets on the retention of habituation to a 5-min exposure to an open field measured 24 h later. We also determined whether the exposure to a novel environment resulted in the activation of the same intracellular signaling cascades previously shown to be activated during hippocampal-dependent associative learning. The immediate posttraining bilateral infusion of CNQX (1 μg/side), an AMPA/kainate glutamate receptor antagonist, or of muscimol (0.03 μg/side), a GABAA receptor agonist, into the CA1 region of the dorsal hippocampus impaired long-term memory of habituation. The NMDA receptor antagonist AP5 (5 μg/side) impaired habituation when infused 15 min before, but not when infused immediately after, the 5-min training session. In addition, KN-62 (3.6 ng/side), an inhibitor of calcium calmodulin-dependent protein kinase II (CaMKII), was amnesic when infused 15 min before or immediately and 3 h after training. In contrast, the cAMP-dependent protein kinase (PKA) inhibitor Rp-cAMPS, the mitogen-activated protein kinase kinase (MAPKK) inhibitor PD098059, and the protein synthesis inhibitor anisomycin, at doses that fully block memory formation of inhibitory avoidance learning, did not affect habituation to a novel environment. The detection of spatial novelty is associated with a sequential activation of PKA, ERKs (p44 and p42 MAPKs) and CaMKII and the phosphorylation of c-AMP responsive element-binding protein (CREB) in the hippocampus. These findings suggest that memory formation of spatial habituation depends on the functional integrity of NMDA and AMPA/kainate receptors and CaMKII activity in the CA1 region of the hippocampus and that the detection of spatial novelty is accompanied by the activation of at least three different hippocampal protein kinase signaling cascades.  相似文献   

4.
Rats received an ip injection of saline, epinephrine HCl (5.0 micrograms/kg), or ACTH1--24(0.2 microgram/kg) immediately after training in a step-down inhibitory avoidance task, and an ip injection of saline, or epinephrine (0.5, 1.0, 2.0, 3.0, 5.0, or 10.0 mu/kg), or ACTH (0.02, 0.04 0.08, 0.12, 0.2, or 0.4 microgram/kg) 6 min prior to a test session of the same task 24 hr after training. Retention was excellent in the groups treated with saline after training, and poor in those treated with ACTH or epinephrine after training and tested under saline. The amnestic effect of the drugs was counteracted by their administration prior to testing, and there was a dose-response curve for this effect: partial recovery from amnesia was obtained with 20 or 40% of the amnestic dose and full recovery was obtained with 60 to 100% of that dose when the same drug was given after training and prior to testing; if the drugs given after training and prior to testing were not the same, full recovery was obtained only with twice the amnestic dose of the latter. These findings are consistent with the hypothesis that learning depends on the relation between the endogenous levels of these two hormones in the post-training period and during testing. The animals seem capable of discriminating between the two drugs only partially.  相似文献   

5.
6.
When administered near the time of training, protein synthesis inhibitors such as anisomycin impair later memory. A common interpretation of these findings is that memory consolidation requires new protein synthesis initiated by training. However, recent findings support an alternative interpretation that abnormally large increases in neurotransmitter release after injections of anisomycin may be responsible for producing amnesia. In the present study, a local anesthetic was administered prior to anisomycin injections in an attempt to mitigate neurotransmitter actions and thereby attenuate the resulting amnesia. Rats received lidocaine and anisomycin injections into the amygdala 130 and 120 min, respectively, prior to inhibitory avoidance training. Memory tests 48 h later revealed that lidocaine attenuated anisomycin-induced amnesia. In other rats, in vivo microdialysis was performed at the site of amygdala infusion of lidocaine and anisomycin. As seen previously, anisomycin injections produced large increases in release of norepinephrine in the amygdala. Lidocaine attenuated the anisomycin-induced increase in release of norepinephrine but did not reverse anisomycin inhibition of protein synthesis, as assessed by c-Fos immunohistochemistry. These findings are consistent with past evidence suggesting that anisomycin causes amnesia by initiating abnormal release of neurotransmitters in response to the inhibition of protein synthesis.  相似文献   

7.
The effect of post-training intradorsal striatal infusion of metabotropic glutamate receptor (mGluR) drugs on memory consolidation processes in an inhibitory avoidance (IA) task and visible/hidden platform water maze tasks was examined. In the IA task, adult male Long-Evans rats received post-training intracaudate infusions of the broad spectrum mGluR antagonist α-methyl-4-carboxyphenylglycine (MCPG; 1.0, 2.0 mM/0.5 μL), the group I/II mGluR agonist 1-aminocyclopentane-1,3-carboxylic acid (ACPD; 0.5 or 1.0 μM/0.5 μL), or saline immediately following footshock training, and retention was tested 24 h later. In the visible- and hidden-platform water maze tasks, rats received post-training intracaudate infusions of ACPD (1.0 μM), MCPG (2.0 mM), or saline immediately following an eight-trial training session, followed by a retention test 24 h later. In the IA task, post-training infusion of ACPD (0.5 and 1.0 μM) or MCPG (1.0 and 2.0 mM) impaired retention. In the IA and visible-platform water maze tasks, post-training infusion of ACPD (1.0 μM), or MCPG (2.0 mM) impaired retention. In contrast, neither drug affected retention when administered post-training in the hidden-platform task, consistent with the hypothesized role of the dorsal striatum in stimulus-response habit formation. When intradorsal striatal injections were delayed 2 h post-training in the visible-platform water maze task, neither drug affected retention, indicating a time-dependent effect of the immediate post-training injections on memory consolidation. It is hypothesized that MCPG impaired memory via a blockade of postsynaptic dorsal striatal mGluR's, while the impairing effect of ACPD may have been caused by an influence of this agonist on presynaptic “autoreceptor” striatal mGluR populations.  相似文献   

8.
Adult male Wistar rats were bilaterally implanted with indwelling cannulae in the caudal region of the posterior cingulate cortex. After recovery, animals were trained in a step-down inhibitory avoidance task (3.0-s, 0.4-mA foot shock) and received, right after training, a 0.5-microl infusion of vehicle (phosphate-buffered saline, pH 7.4), of the GABA(A) receptor agonist muscimol (0.1 or 0.5 microg), of the cAMP-dependent protein kinase (PKA) stimulant Sp-cAMPS (0.1 or 0.5 microg), or of the PKA inhibitor Rp-cAMPS (0.1 or 0.5 microg). Animals were tested twice, 1.5 h and, again, 24 h after training, in order to examine the effects of these agents on short- and long-term memory, respectively. Muscimol (0.5 but not 0.1 microg) hindered retention for both short- and long-term memory (p <.05). Rp-cAMPS (0.1 or 0.5 microg) hindered retention for short-term memory (p <.05). In addition, these animals showed lower, but not significantly lower, latencies than controls in the test session for long-term memory (p >.10). A trend toward an amnesic effect on long-term memory was also observed after Sp-cAMPS infusion at 0.1 microg (p <.10). These results show that strong stimulation of GABAergic synapses in the caudal region of the rat posterior cingulate cortex right after training impairs short- and long-term memory (the latter less dramatically). The same occurs by inhibiting PKA activity with regard to STM and possibly to LTM.  相似文献   

9.
This study examined an interaction between glutamate and norepinephrine in the bed nucleus of the stria terminalis (BNST) in modulating affective memory formation. Male Wistar rats with indwelling cannulae in the BNST were trained on a one-trial step-through inhibitory avoidance task and received pre- or post-training intra-BNST infusion of glutamate, norepinephrine or their antagonists. Results of the 1-day test indicated that post-training intra-BNST infusion of dl-2-amino-5-phosphonovaleric acid (APV) impaired retention in a dose- and time-dependent manner, while infusion of glutamate had an opposite effect. Co-infusion of 0.2 μg glutamate and 0.02 μg norepinephrine resulted in marked retention enhancement by summating non-apparent effects of the two drugs given at a sub-enhancing dose. The amnesic effect of 5.0 μg APV was ameliorated by 0.02 μg norepinephrine, while the memory enhancing effect of 1.0 μg glutamate was attenuated by 5.0 μg propranolol. These findings suggest that training on an inhibitory avoidance task may alter glutamate neurotransmission, which by activating NMDA receptors releases norepinephrine to modulate memory formation via β adrenoceptors in the BNST.  相似文献   

10.
The aim of the present research was to verify whether the impairment of retention induced by the N-methyl-d-aspartate (NMDA) receptor blocker (+)-10,11-dihydro-5-methyl-5H-dibenzo[a,d]cycloheptene-5,10 imine (MK-801) can be reversed by memory-enhancing treatments. Adult female Wistar rats were trained and tested in a step-down inhibitory avoidance task (0.3-mA foot shock, 24-h training-test interval). Animals were given an ip injection of saline (SAL) or MK-801 (0.0625 mg/kg) 30 minutes before training, and an ip injection of SAL, epinephrine (EPI) (25 microg/kg), the opioid receptor antagonist naloxone (NAL) (0.4 mg/kg), the glucocorticoid receptor agonist dexamethasone (DEX) (0.3 mg/kg), or glucose (GLU) (320 mg/kg) immediately after training. There was an impairment of inhibitory avoidance retention in the MK-801-SAL, MK-801-EPI, MK-801-NAL, MK-801-DEX, and MK-801-GLU groups. There was an enhancement of retention in the SAL-EPI, SAL-NAL, SAL-DEX, and SAL-GLU groups. A control experiment showed that the amnestic effects of MK-801 could not be attributed to decreased reactivity to the foot shock. The results suggest that memory-enhancing treatments directed at modulatory mechanisms do not reverse the memory impairment induced by NMDA receptor blockade.  相似文献   

11.
Glucose effects on memory: behavioral and pharmacological characteristics   总被引:4,自引:0,他引:4  
Recent findings indicate that post-training glucose injections can modulate memory storage for inhibitory (passive) avoidance training. Experiment I extended these findings to determine whether glucose, like other memory modulating treatments, enhances memory storage when administered after training with low footshock and impairs memory storage after high footshock training. In Experiment I, male Sprague-Dawley rats were trained in a one-trial inhibitory avoidance task using either a brief footshock (0.5 mA, 0.7 s) or slightly more intense footshock kept on until escape (0.7 mA, mean escape latency = 3.4 s). Immediately after training, each rat received a subcutaneous injection of glucose (100 mg/kg). When tested for retention performance 24 h later, the glucose-injected animals exhibited enhanced retention performance for low footshock training and impaired retention for high footshock training. Experiment II determined whether pretreatment with adrenergic antagonists blocked the effects of glucose on memory. Pretreatment with the alpha- or beta-adrenergic receptor antagonists, phenoxybenzamine, or propranolol, respectively, had no effect on acquisition or retention in animals trained with the brief footshock and did not affect glucose facilitation of that memory. In animals trained to escape footshock, phenoxybenzamine did not attenuate the amnesia produced by glucose. Propranolol-pretreated animals had impaired retention whether or not they received post-training amnestic injections of glucose; glucose had no effect on retention in these amnestic animals. These findings add further support to the view that glucose release after training and treatment may represent a physiological response subsequent to epinephrine release in modulating memory storage processing.  相似文献   

12.
The effect of two shock intensities (1.00 and 2.00 mA) were studied in the acquisition, maintenance, and extinction of unsignalled avoidance by albino rats. Single and multiple avoidance schedules were employed, with shock intensity being the principal condition that differed between schedule components. The higher shock intensity was generally more effective in producing avoidance. Higher response rates and lower shock rates were observed under high-intensity shock when performance stabilized. When the multiple schedule was introduced, the six rats trained under a single shock intensity all showed poorer performance under the new shock intensity, whether it was higher or lower than the training intensity. Performance under the original shock intensity did not change substantially with the introduction of a different shock intensity in the other multiple schedule component. Performance under the new shock intensity showed gradual improvement with continued exposure to it. All of the rats showed persistent “warm-up”, receiving approximately 40% of the total session shocks in the first one-sixth of the session. The degree of warm-up was unrelated to avoidance shock intensity.  相似文献   

13.
The blockers of glutamate receptors, aminophosphonovaleric acid (AP5) (5.0 micrograms) and cyano-nitroquinoxaline-dione (CNQX) (0.5 microgram), were infused bilaterally into the amygdala, dorsal hippocampus, or entorhinal cortex of rats through indwelling cannulae 0, 90, 180, or 360 min after step-down inhibitory avoidance training. Animals were tested for retention 24 h after training. In the amygdala or hippocampus, AP5 was amnestic when given 0 min after training and CNQX was amnestic when given 0, 90, or 180 min after training. In the entorhinal cortex, AP5 was amnestic when given 90 or 180 min after training and CNQX had no effect. The results suggest that a phenomenon sensitive first to AP5 and then to CNQX in the amygdala and hippocampus, probably long-term potentiation (LTP), is crucial to post-training memory processing. LTP in these two structures could underlie their role in memory consolidation and could explain the late involvement of the entorhinal cortex in post-training memory processing.  相似文献   

14.
Groups of C57BL/6J mice were administred cycloheximide (CYC) 30 min before or immediately after training on a passive avoidance task and tested 72 hr later. Some CYC-pretreated groups were given strychnine or d-amphetamine (d-amp) immediately after training and others were given d-amp 1 hr after training. Other groups were given diethyldithiocarbamate (DDC) at various times before or after training. Some DDC-pretreated groups were gived-amp or strychnine as described above for CYC groups. Immediate posttraining administration of 5 mg/kg d-amp, but not strychnine, prevented amnesia in CYC-pretreated mice. The DDC induced an apparent amnesia when administered from 30 min before training to 3 hr after training. Posttraining administration of d-amp or strychnine did not prevent DDC-induced amnesia. These results are discussed in relation to previous suggestions that CYC- and DDC-induced amnesia may be the result of a functional impairment of catecholamine neurotransmitter systems by these drugs.  相似文献   

15.
The present experiments examined the role of the central cholinergic system in the memory impairment induced by post-training administration of a nitric oxide synthase (NOS) inhibitor in mice. Male Swiss mice received a one-trial inhibitory avoidance training (0.8 mA, 50 Hz, 1-s footshock) followed immediately by an ip injection of the NOS inhibitor -NG-nitroarginine methyl ester ( -NAME; 100 mg/kg). Retention (cut-off time, 300 s) was tested 48 h after training. The administration of -NAME results in memory impairment for the inhibitory avoidance task. The effects of -NAME (100 mg/kg, ip) on retention were reversed in a dose-related manner by the centrally acting anticholinesterase physostigmine (35, 70, or 150 μg/kg, sc) administered 30 min after the NOS inhibitor. Further, -NAME (100 mg/kg, ip)-induced memory impairment was completely antagonized by the centrally acting muscarinic cholinergic agonist oxotremorine (OTM; 25, 50, or 100 μg/kg, sc) when given 30 min after -NAME. The peripherally acting anticholinesterase neostigmine (150 μg/kg, sc) did not modify the memory-impairing effects of -NAME. These findings suggest that the memory impairment following post-training administration of a NOS inhibitor is mediated, at least in part, by a reduction of the activity of central muscarinic cholinergic mechanisms and are consistent with our previous view that nitric oxide may be involved in post-training neural processes underlying the storage of newly acquired information.  相似文献   

16.
Rats were subjected to three consecutive sessions, one session per day, of either a step-down inhibitory avoidance task using a 60-Hz. 0.3-mA footshock, or a two-way active avoidance task using 20 presentations of a 5-s, 1-kHz tone and a 0.3-mA footshock. After either the first or the second training session animals received an intraperitoneal injection of ACTH (0.2 microgram/kg), epinephrine-HCl (5.0 micrograms/kg), or naloxone-HCl (0.8 mg/kg). All these treatments caused memory facilitation on both tasks when administered after the first training session. When administered after the second training session only ACTH and adrenaline were effective, on both tasks. As previous physiological and pharmacological reports point to the activation of the brain beta-endorphin system after the first, but not the second, session of a task, we propose that (a) memory facilitation by naloxone depends on the previous activation of the brain beta-endorphin system; and (b) memory facilitation due to ACTH or epinephrine does not depend on the opioid activity, so their effects are expressed after both the first and the second training sessions. It was also observed that the enhancement of performance in the second training session due to post-training facilitatory treatments carried over to the test session. These results suggest that some form of consolidation occurs both after the first and after the second training session.  相似文献   

17.
It has been suggested that retrieval during a nonreinforced test induces reconsolidation instead of extinction of the mnemonic trace. Reconsolidation would preserve the original memory from the labilization induced by its nonreinforced recall through a hitherto uncharacterized mechanism requiring protein synthesis. Given the importance that such a process would have in terms of maintaining, as part of the animal behavioral repertoire, a learned response that has been devalued by experience, we analyzed its existence for the memory associated with a one-trial, step-down inhibitory avoidance task (IA), a memory whose consolidation and extinction require protein synthesis in the CA1 region of the dorsal hippocampus (CA1) and involve the participation of the basolateral amygdala (BLA) and entorhinal cortex (ENT). Rats were trained in IA, and 24 h later they were submitted either to a pure reactivation session (retrieval without stepping down), which was unable by itself to initiate extinction of the avoidance response, or to a second training session. Fifteen minutes before or 3 h after either the reactivation or the retraining sessions, animals were infused with the protein synthesis inhibitor anisomycin (ANI) into CA1, BLA, or ENT. Contrary to the prediction of the reconsolidation hypothesis, none of these treatments affected subsequent memory retention. Because reconsolidation is regarded to be a direct consequence of retrieval, one would expect that, when given before a retention test or a pure reactivation session, enhancers of memory expression should permanently improve retention and, therefore, facilitate retrieval both in that and in subsequent sessions. Using two well-known retrieval enhancers, noradrenaline and adrenocorticotropin(1-24), we could not find any evidence suggestive of reconsolidation. Hence, our results indicate that there is no retrieval-induced, protein synthesis-dependent process that would cause reconsolidation of IA memory.  相似文献   

18.
In this study, we analyzed the participation of the entorhinal cortex in extinction of a learned aversive response. Rats with infusion cannulae aimed to the entorhinal cortex were trained in a one-trial step-down inhibitory avoidance task (IA) and submitted to four consecutive daily test sessions without the footshock, a procedure that induced extinction of the conditioned response in control animals. When infused into the entorhinal cortex immediately after the first extinction session at doses able to block consolidation of IA memory, the NMDA receptor antagonist, AP5 (25 nmol/side), the inhibitor of protein synthesis anisomycin (300 nmol/side) and the inhibitor of CaMKII, KN-93 (10 nmol/side), but not the MEK1/2 inhibitor PD-98059 (5 nmol/side) hindered extinction of the IA response. The same results were obtained when the interval between the first and second test session was 48 instead of 24h. The data indicate that normal functionality of the NMDA receptors, together with CaMKII activity and protein synthesis are necessary in the entorhinal cortex at the time of the first test session to generate extinction. Our results also suggest that the ERK1/2 pathway does not play a role in this process.  相似文献   

19.
Mitogen-activated protein kinase (MAPK) is abundantly expressed in postmitotic neurons of the developed nervous system. MAPK is activated and required for induction of long-term potentiation (LTP) in the CA1 area of the hippocampus, which is blocked by the specific inhibitor of the MAPK kinase, PD 098059. Recently it was demonstrated that MAPK is activated in the hippocampus after training and is necessary for contextual fear conditioning learning. The present work tests the role of the MAPK cascade in step-down inhibitory avoidance (IA) retention. PD 098059 (50 microM) was bilaterally injected (0.5 microl/side) into the CA1 region of the dorsal hippocampus or entorhinal cortex at 0, 90, 180, or 360 min, or into the amygdala or parietal cortex at 0, 180, or 360 min after IA training in rats using a 0.4-mA foot shock. Retention testing was carried out 24 h after training. PD 098059 impaired retention when injected into the dorsal hippocampus at 180 min, but not 0, 90, and 360 min after training. When infused into the entorhinal cortex, PD 098059 was amnestic at 0 and 180 min, but not at 90 and 360 min after training. The MAPKK inhibitor also impairs IA retention when infused into the parietal cortex immediately after training, but not at 180 or 360 min. Infusions performed into amygdala were amnestic at 180 min, but not at 0 and 360 min after training. Our results suggest a time-dependent involvement of the MAPK cascade in the posttraining memory processing of IA; the time dependency is different in the hippocampus, amygdala, entorhinal cortex, or parietal cortex of rats.  相似文献   

20.
Rats were submitted to three consecutive sessions, one session per day, of step-down inhibitory avoidance task (60-Hz, 0.3-mA footshock) or of two-way active avoidance task (25 trials of a 5-s, 1-kHz tone and a 0.4-mA footshock). Animals received intraperitoneal (ip) injections of saline or beta-endorphin (2.0 micrograms/kg) before or after the second session and before the third session. beta-Endorphin given before either the second or the third session improved retention of both tasks, while its administration after the second session had no effect upon performance on both tasks. In Experiment 2, it was shown that rats receiving naloxone (0.2 mg/kg) ip after the first session did not exhibit the enhancement of retrieval by beta-endorphin administration before the second session, so a non-state-dependent improvement of retrieval by the opioid seems to be unlikely. In view of these results we can propose that the presession retrieval enhancing effect of beta-endorphin is due to an endogenous state dependency on the opioid that can be expressed either in the second or in the third session of aversive tasks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号