首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
It has been suggested that pain perception and attention are closely linked at both a neural and a behavioural level. If pain and attention are so linked, it is reasonable to speculate that those who vary in working memory capacity (WMC) should be affected by pain differently. This study compares the performance of individuals who differ in WMC as they perform processing and memory span tasks while under mild pain and not. While processing performance under mild pain does not interact with WMC, the ability to store information for later recall does. This suggests that pain operates much like an additional processing burden, and that the ability to overcome this physical sensation is related to differences in WMC.  相似文献   

2.
Individual differences in working memory capacity and enumeration   总被引:5,自引:0,他引:5  
Two experiments are reported in which subjects performed working memory and enumeration tasks. In the first experiment, subjects scoring low on the working memory task also performed poorly on the attention-demanding "counting" portion of the enumeration task. Yet no span differences were found for the non-attention-demanding "subitizing" portion. In Experiment 2, conjunctive and disjunctive distractors were added to the enumeration task. Although both high and low working memory span subjects were adversely affected by the addition of conjunctive distractors, the effect was much greater for the low-span subjects. Implications from these findings are that differences in working memory capacity correspond to differences in capability for controlled attention.  相似文献   

3.
Individual differences in working memory capacity (WMC) have been implicated in a variety of top-down, attention-control tasks: Higher WMC subjects better ignore irrelevant distractions and withhold habitual responses than do lower WMC subjects. Kane, Poole, Tuholski, and Engle (2006) recently attempted to extend these findings to visual search, but found no relation between WMC and search efficiency, even in difficult tasks yielding steep search slopes. Here we used a visual search task that isolated the contributions of top-down versus bottom-up mechanisms, and induced a habitual response via expectation. Searches that relied primarily on bottom-up mechanisms did not vary with WMC, but searches that relied primarily on top-down mechanisms showed an advantage for higher over lower WMC subjects.  相似文献   

4.
Decades of research have established that "online" cognitive processes, which operate during conscious encoding and retrieval of information, contribute substantially to individual differences in memory. Furthermore, it is widely accepted that "offline" processes during sleep also contribute to memory performance. However, the question of whether individual differences in these two types of processes are related to one another remains unanswered. We investigated whether working memory capacity (WMC), a factor believed to contribute substantially to individual differences in online processing, was related to sleep-dependent declarative memory consolidation. Consistent with previous studies, memory for word pairs reliably improved after a period of sleep, whereas performance did not improve after an equal interval of wakefulness. More important, there was a significant, positive correlation between WMC and increase in memory performance after sleep but not after a period of wakefulness. The correlation between WMC and performance during initial test was not significant, suggesting that the relationship is specific to change in memory due to sleep. This suggests a fundamental underlying ability that may distinguish individuals with high memory capacity.  相似文献   

5.
Working memory is crucial for many higher-level cognitive functions, ranging from mental arithmetic to reasoning and problem solving. Likewise, the ability to learn and categorize novel concepts forms an indispensable part of human cognition. However, very little is known about the relationship between working memory and categorization, and modeling in category learning has thus far been largely uninformed by knowledge about people's memory processes. This article reports a large study (N = 113) that related people's working memory capacity (WMC) to their category-learning performance using the 6 problem types of Shepard, Hovland, and Jenkins (1961). Structural equation modeling revealed a strong relationship between WMC and category learning, with a single latent variable accommodating performance on all 6 problems. A model of categorization (the Attention Learning COVEring map, ALCOVE; Kruschke, 1992) was fit to the individual data and a single latent variable was sufficient to capture the variation among associative learning parameters across all problems. The data and modeling suggest that working memory mediates category learning across a broad range of tasks.  相似文献   

6.
In two experiments, we examined how various learning conditions impact the relation between working memory capacity (WMC) and memory search abilities. Experiment 1 employed a delayed free recall task with semantically related words to induce the buildup of proactive interference (PI) and revealed that the buildup of PI differentially impacted recall accuracy and recall latency for low-WMC and high-WMC individuals. Namely, the buildup of PI impaired recall accuracy and slowed recall latency for low-WMC individuals to a greater extent than what was observed for high-WMC individuals. To provide a circumstance in which previously learned information remains relevant over the course of learning, Experiment 2 required participants to complete a multitrial delayed free recall task with unrelated words. Results revealed that with increased practice with the same word list, WMC-related differences were eventually eliminated in interresponse times (IRTs) and recall accuracy, but not recall latency. Thus, despite still accumulating larger search sets, low-WMC individuals searched LTM as efficiently as high-WMC individuals. Collectively, these results are consistent with the notion that under normal free recall conditions, low-WMC individuals search LTM less efficiently than do high-WMC individuals because of their reliance on noisy temporal–contextual cues at retrieval. However, it appears that under conditions in which previously learned items remain relevant at recall, this tendency to rely on vague self-generated retrieval cues can actually facilitate the ability to accurately and quickly recall information.  相似文献   

7.
Working memory is usually defined in cognitive psychology as a system devoted to the simultaneous processing and maintenance of information. However, although many models of working memory have been put forward during the last decades, they often leave underspecified the dynamic interplay between processing and storage. Moreover, the account of their interaction proposed by the most popular A. D. Baddeley and G. Hitch's (1974) multiple-component model is contradicted by facts, leaving unresolved one of the main issues of cognitive functioning. In this article, the author derive from the time-based resource-sharing model of working memory a mathematical function relating the cognitive load involved by concurrent processing to the amount of information that can be simultaneously maintained active in working memory. A meta-analysis from several experiments testing the effects of processing on storage corroborates the parameters of the predicted function, suggesting that it properly reflects the law relating the 2 functions of working memory.  相似文献   

8.
Selectively retrieving a subset of previously studied information enhances memory for the retrieved information but causes forgetting of related, nonretrieved information. Such retrieval-induced forgetting (RIF) has often been attributed to inhibitory executive-control processes that supposedly suppress the nonretrieved items' memory representation. Here, we examined the role of working memory capacity (WMC) in young adults' RIF. WMC was assessed by means of the operation span task. Results revealed a positive relationship between WMC and RIF, with high-WMC individuals showing more RIF than low-WMC individuals. In contrast, individuals showed enhanced memory for retrieved information regardless of WMC. The results are consistent with previous individual-differences work that suggests a close link between WMC and inhibitory efficiency. In particular, the finding supports the inhibitory executive-control account of RIF.  相似文献   

9.
Numerous studies have shown that sex differences in visuospatial tasks vary in size and direction depending on the nature of the task, with large differences favoring males on tasks that require transformations in visuospatial working memory. The cognitive processes underlying these differences were investigated using laboratory tasks developed by Dror and Kosslyn (1994). Four cognitive components of visuospatial working memory were assessed—image generation, maintenance, scanning, and transformation—in an attempt to identify the components that would show differential effects for females and males. The image generation task required retrieval of shape information from long-term memory, generation of a visual image in working memory, and utilization of the information about the shape in a decision task. The image maintenance task required only the latter two processes. The information processing demands required by scanning and rotation tasks came from the need to transform the visual image so that it could be used in decision making. Males responded more quickly on all four tasks (ds between .63 and .77), with no between-sex differences in accuracy. We concluded that speed of processing is central to understanding sex differences in visuospatial working memory. We discuss implications of these findings for performance on real-world visuospatial tasks.  相似文献   

10.
Dual-process theories of the mind are ubiquitous in psychology. A central principle of these theories is that behavior is determined by the interplay of automatic and controlled processing. In this article, the authors examine individual differences in the capacity to control attention as a major contributor to differences in working memory capacity (WMC). The authors discuss the enormous implications of this individual difference for a host of dual-process theories in social, personality, cognitive, and clinical psychology. In addition, the authors propose several new areas of investigation that derive directly from applying the concept of WMC to dual-process theories of the mind.  相似文献   

11.
Performance on antisaccade trials requires the inhibition of a prepotent response (i.e., don't look at the flashing cue) and the generation and execution of a correct saccade in the opposite direction. The authors attempted to further specify the role of working memory (WM) span differences in the antisaccade task. They tested high- and low-span individuals on variants of prosaccade and antisaccade trials in which an eye movement is the sole requirement. In 3 experiments, they demonstrated the importance of WM span differences in both suppression of a reflexive saccade and generation of a volitional eye movement. The results support the contention that individual differences in WM span are not exclusively due to differences in inhibition but also reflect differences in directing the focus of attention.  相似文献   

12.
13.
To the extent that individual differences in working memory capacity (WMC) reflect differences in attention (Baddeley, 1993; Engle, Kane, & Tuholski, 1999), differences in WMC should predict performance on visual attention tasks. Individuals who scored in the upper and lower quartiles on the OSPAN working memory test performed a modification of Egly and Homa’s (1984) selective attention task. In this task, the participants identified a central letter and localized a displaced letter flashed somewhere on one of three concentric rings. When the displaced letter occurred closer to fixation than the cue implied, high-WMC, but not low-WMC, individuals showed a cost in the letter localization task. This suggests that low-WMC participants allocated attention as a spotlight, whereas those with high WMC showed flexible allocation.  相似文献   

14.
A capacity theory of comprehension: individual differences in working memory.   总被引:77,自引:0,他引:77  
A theory of the way working memory capacity constrains comprehension is proposed. The theory proposes that both processing and storage are mediated by activation and that the total amount of activation available in working memory varies among individuals. Individual differences in working memory capacity for language can account for qualitative and quantitative differences among college-age adults in several aspects of language comprehension. One aspect is syntactic modularity: The larger capacity of some individuals permits interaction among syntactic and pragmatic information, so that their syntactic processes are not informationally encapsulated. Another aspect is syntactic ambiguity: The larger capacity of some individuals permits them to maintain multiple interpretations. The theory is instantiated as a production system model in which the amount of activation available to the model affects how it adapts to the transient computational and storage demands that occur in comprehension.  相似文献   

15.
In two experiments, the locus of individual differences in working memory capacity and long-term memory recall was examined. Participants performed categorical cued and free recall tasks, and individual differences in the dynamics of recall were interpreted in terms of a hierarchical-search framework. The results from this study are in accordance with recent theorizing suggesting a strong relation between working memory capacity and retrieval from long-term memory. Furthermore, the results also indicate that individual differences in categorical recall are partially due to differences in accessibility. In terms of accessibility of target information, two important factors drive the difference between high- and low-working-memory-capacity participants. Low-working-memory-capacity participants fail to utilize appropriate retrieval strategies to access cues, and they also have difficulty resolving cue overload. Thus, when low-working-memory-capacity participants were given specific cues that activated a smaller set of potential targets, their recall performance was the same as that of high-working-memory-capacity participants.  相似文献   

16.
The present study examines how individual differences in working memory capacity relate to the effect of misleading postevent information on memory for the original event. Participants were shown a film of a crime event and were then asked to unscramble a narrative that included misinformation regarding some of the film's details. Additionally, the working memory capacity of the participants was measured using the operation‐word span task. Finally, in a free recall test, participants recalled fewer correct details in the misinformation condition compared to the control condition. This effect was negatively correlated with working memory capacity. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
The controlled attention theory of working memory suggests that individuals with greater working memory capacity (WMC) are better able to control or focus their attention than individuals with lesser WMC. This relationship has been observed in a number of selective attention paradigms including a dichotic listening task (Conway, Cowan, & Bunting, 2001) in which participants were required to shadow words presented to one ear and ignore words presented to the other ear. Conway et al. found that when the participant’s name was presented to the ignored ear, 65% of participants with low WMC reported hearing their name, compared to only 20% of participants with high WMC, suggesting greater selective attention on the part of high WMC participants. In the present study, individual differences in divided attention were examined in a dichotic listening task, in which participants shadowed one message and listened for their own name in the other message. Here we find that 66.7% of high WMC and 34.5% of low WMC participants detected their name. These results suggest that as WMC capacity increases, so does the ability to control the focus of attention, with high WMC participants being able to flexibly “zoom in” or “zoom out” depending on task demands.  相似文献   

18.
Neuroscience suggests that the anterior cingulate cortex (ACC) is responsible for conflict monitoring and the detection of errors in cognitive tasks, thereby contributing to the implementation of attentional control. Though individual differences in frontally mediated goal maintenance have clearly been shown to influence outward behavior in interference-rich contexts, it is unclear whether corresponding differences exist in neural responses that arise out of the ACC. To investigate this possibility, we conducted an electrophysiological study using a variant of the Simon Task, recording event-related potentials (ERPs) in healthy normal individuals with varying working memory capacity (high vs. low spans; a behavioral proxy for variability in goal maintenance). Primary analyses focused on the magnitude of the error-related negativity (ERN), a response-locked ERP component associated with the commission of errors thought to arise because of action monitoring in the ACC. Our results revealed that frontally mediated working memory capacity may alter error monitoring by the ACC, with high spans showing a greater ERN than low spans. These individual differences were also observed in the posterror positivity, a response-locked ERP component associated with updating cognitive strategies, suggesting greater awareness of errors with increased working memory capacity. These results are interpreted within 2-process models of attentional control, suggesting individuals with greater working memory capacity may better maintain task goals by more strongly biasing neural activity in frontal-executive networks.  相似文献   

19.
Why does visual working memory performance increase with age in childhood? One recent study ( Cowan et al., 2010b ) ruled out the possibility that the basic cause is a tendency in young children to clutter working memory with less‐relevant items (within a concurrent array, colored items presented in one of two shapes). The age differences in memory performance, however, theoretically could result from inadequate encoding of the briefly presented array items by younger children. We replicated the key part of the procedure in children 6–8 and 11–13 years old and college students (total N = 90), but with a much slower, sequential presentation of the items to ensure adequate encoding. We also required verbal responses during encoding to encourage or discourage labeling of item information. Although verbal labeling affected performance, age differences persisted across labeling conditions, further supporting the existence of a basic growth in capacity.  相似文献   

20.
Some research on attentional control in working memory has emphasized theoretical capacity differences. However, strategic behavior, which has been relatively unexplored, can also influence attentional control and its relationship to cognitive performance. In two experiments, we examined the relationship between attentional control (measured with operation span) and interference in a part-list cuing paradigm. Paradoxically, the results indicated that superior attentional control was related to increased interference. This relationship reflected the participants’ use of more complex encoding strategies, rather than superior interference control at retrieval, and was eliminated following brief encoding strategy training. The results suggest that complex span measures sometimes predict individual differences in task strategies related to interference control and that these strategies may be amenable to training. The implications for working memory research and the roles of strategies in basic memory and attention paradigms are briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号