首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Prior work demonstrates that humans spontaneously synchronize their head and trunk kinematics to a broad range of driving frequencies of perceived mediolateral motion prescribed using optical flow. Using a closed-loop visuomotor error augmentation task in an immersive virtual environment, we sought to understand whether unifying visual with vestibular and somatosensory feedback is a control goal during human walking, at least in the context of head and trunk stabilization. We hypothesized that humans would minimize visual errors during walking – i.e., those between the visual perception of movement and actual movement of the trunk. We found that subjects did not minimize errors between the visual perception of movement and actual movement of the head and trunk. Rather, subjects increased mediolateral trunk range of motion in response to error-augmented optical flow with positive feedback gains. Our results are more consistent with our alternative hypothesis – that visual feedback can override other sensory modalities and independently compel adjustments in head and trunk position. Also, aftereffects following exposure to error-augmented optical flow included longer, narrower steps and reduced mediolateral postural sway, particularly in response to larger amplitude positive feedback gains. Our results allude to a recalibration of head and trunk stabilization toward more tightly regulated postural control following exposure to error-augmented visual feedback. Lasting reductions in mediolateral postural sway may have implications for using error-augmented optical flow to enhance the integrity of walking balance control through training, for example in older adults.  相似文献   

2.
The elderly are known to exhibit declines in postural control during standing and walking, however little is known about how the elderly react under time-critical and challenging postural situations. The purpose of this study was to examine age-related differences in reaction time (RT) and the pattern of temporal coordination between center of pressure (COP), trunk and head motion during voluntary postural sway movements. Healthy young (n=10; mean=24 years; SD=5 years) and elderly men (n=8; mean=75 years; SD=2 years) stood on a force plate with tri-axial accelerometers attached to the head and lower trunk. Participants were required to generate sway in the anterior-posterior (AP) or medial-lateral (ML) direction in response to an auditory cue during two different testing conditions called Static reaction and Dynamic reaction. Static reactions involved the initiation of voluntary sway in either the AP or ML direction from quiet stance. Dynamic reactions involved an orthogonal switch of voluntary sway between the AP and ML directions. Compared to the young, elderly individuals exhibited slower RT during both Static and Dynamic reaction, and smaller differences in RT and phasing between COP, trunk, and head motion. The results of this study suggest that the elderly adopted more rigid coordination strategies compared to the young when executing a rapid change in direction of whole body motion. The rigid movement strategy of the elderly was presumably generated in an effort to compensate for increased challenge to the maintenance of stability.  相似文献   

3.
Forward bending and backward return of the human trunk in the sagittal plane are associated with a specific lumbopelvic rhythm, which consists of magnitude and timing aspects. In this study, the age-related differences in the timing aspect of lumbopelvic rhythm were investigated using the continuous relative phase method. Specifically, the mean absolute relative phase (MARP) between the thoracic and pelvic motions as well as variation in MARP under repetitive motions, denoted by deviation phase (DP), were characterized in sixty participants between 20 and 70 years old. MARP and DP were determined for trunk forward bending and backward return tasks with self-selected slow and fast paces. The MARP and DP were both smaller (p = 0.003, p < 0.001 respectively) in the older versus younger age participants with no gender-related difference. In fast versus slow pace task, the MARP was smaller (p < 0.001) only in forward bending, whereas the DP was smaller (p < 0.001) in both the forward bending and backward return. A more in-phase and more stable lumbopelvic rhythm denoted respectively by smaller MARP and DP in older versus younger individuals maybe a neuromuscular strategy to protect the lower back tissues from excessive strain, in order to reduce the risk of injury.  相似文献   

4.
Young (n = 7) and elderly (n = 7) subjects performed bimanual coordination patterns in the transverse plane according to the in-phase or antiphase mode. Sensory information was manipulated through visual (with or without vision of the limbs) and proprioceptive input (with or without vibratory stimuli on one limb). Movement patterns with vibrations showed higher deviations from the intended relative phase than did those without vibrations. This finding suggests that the proprioceptive information induced by the vibrations and the movement interfered, leading to a disruption of the coordination patterns. In addition, as compared with the elderly, the young subjects performed more stable movements under normal circumstances but were more strongly affected by vibratory stimuli during the performance of in-phase movements. During antiphase movements, both age groups experienced a decrease of pattern stability. Furthermore, the absence or presence of visual feedback influenced the performance of the young subjects more than that of the elderly. The presence of vision led to stable in-phase movements, whereas a decrease of pattern stability was observed for antiphase movements. In general, these results demonstrate that manipulation of feedback sources affects young subjects more than elderly ones, and this can be related to a reduced sensory sensitivity as a function of aging.  相似文献   

5.
Observers were presented with displays simulating a 3-D environment with obstacles in the path of motion. During the trial, observer motion decelerated at a constant rate and was followed by a blackout prior to the end of the display. On some trials the rate of deceleration resulted in stopping before the collision, whereas on other trials the rate of deceleration resulted in a collision with the obstacles. The observer's task was to detect which trials simulated an impending collision. Proportion of collision judgments was greater for older as compared with younger observers when a collision was not simulated. Older observers showed less sensitivity to detect collisions than younger observers did, particularly at high speeds. The age-dependent results are discussed in terms of analyses based on tau and constant deceleration. The results suggest that increased accident rates for older drivers may be due to an inability to detect collisions at high speeds.  相似文献   

6.
The purpose of this study was to investigate the effects of aging and the role of augmented visual information in the acquisition of a new bimanual coordination pattern, namely a 90° relative phase pattern. In a pilot study, younger and older adults received augmented visual feedback in the form of a real-time orthogonal display of both limb movements after every fifth trial. Younger adults acquired this task over three days of practice and retained the task well over periods of one week and one month of no practice while the older adults showed no improvement at all on the task. It was hypothesized that the amount of augmented information was not sufficient for the older adults to overcome the strong tendency to perform natural, intrinsically stable coordination patterns, which consequently prevented them from learning the task. The present study evaluated the age-related role of augmented visual feedback for learning the new pattern. Participants were randomly assigned within age groups to receive either concurrent or terminal visual feedback after every trial in acquisition. In contrast to the pilot study, all of the older adults learned the pattern, although not to the same level as the younger adults. Both younger and older adults benefitted from concurrent visual feedback, but the older adults gained more from the concurrent feedback than the younger adults, relative to terminal feedback conditions. The results suggest that when learning bimanual coordination patterns, older adults are more sensitive to the structure of the practice conditions, particularly the availability of concurrent visual information. This greater sensitivity to the learning environment may reflect a diminished capacity for inhibitory control and a decreased ability to focus attention on the salient aspects of learning the task.  相似文献   

7.
Young and older participants judged the veracity of young and older speakers' opinions about topical issues. All participants found it easier to judge when an older adult was lying relative to a young adult, and older adults were worse than young adults at telling when speakers were telling the truth versus lying. Neither young nor older adults were advantaged when judging a speaker from the same age group. Overall, older adults were more transparent as liars and were worse at detecting lies, with older adults' worse emotion recognition fully mediating the relation between age group and lie detection failures.  相似文献   

8.
The ankle plantar flexion in the late stance phase is referred to as the ankle push-off. When the ankle push-off force is enhanced, compensatory adjustments occur in the adjacent phases. The muscle control that achieves these compensatory movements remains unknown, although they are expected to be coordinately regulated across multiple muscles and phases. Muscle synergy is used as a quantification technique for muscle coordination, and this analysis enables the comparison of synchronized activity between multiple muscles. Therefore, this study aimed to elucidate the tuning of muscle synergies in muscle activation adjustment of push-off. It is hypothesized that muscle activation adjustment of push-off is performed in the muscle synergy related to ankle push-off and in the muscle synergy that activates during the adjacent push-off phase. Eleven healthy men participated, and participants manipulated the activity of the medial gastrocnemius during walking through visual feedback. Two conditions were compared as experimental conditions: increasing the muscle activity to 1.6 times that during normal walking (High) and matching it with that during normal walking (Normal). Twelve muscle activities in the trunk and lower limb and kinematic data were recorded. Muscle synergies were extracted by the non-negative matrix factorization. No significant difference was observed in the number of synergies (High: 3.5 ± 0.8, Normal: 3.7 ± 0.9, p = 0.21) and muscle synergy activation timing and duration between the High and Normal conditions (p > 0.27). However, significant differences were observed in the peak muscle activity during the late stance phase of the rectus femoris (RF), biceps femoris (BF) between conditions (RF at High: 0.32 ± 0.21, RF at Normal: 0.45 ± 0.17, p = 0.02; BF at High: 0.16 ± 0.01, BF at Normal: 0.08 ± 0.06 p = 0.02). Although the quantification of force exertion has not been conducted, the modulation of RF and BF activation could have occurred due to the attempts to help knee flexion. Muscle synergies during normal walking are therefore maintained, and slight adjustments in the amplitude of muscle activity occurred for each muscle.  相似文献   

9.
BackgroundIndividuals with Developmental Coordination Disorder (DCD) experience difficulty with motor coordination and this affects their daily functioning. Research indicated inferior visuospatial processing and oculomotor control in DCD. As visual information is essential for locomotor control, more insight in the gaze behaviour of this population during walking is required and crucial for gaze training interventions as a possible means to improve daily functioning of children and adults with DCD.AimThis study explored differences and similarities in gaze behaviour during walking between typically developing young adults and those with DCD.Methods and proceduresTen young adults with DCD (age: 22.13 ± 0.64) and ten typically developing individuals (age: 22.00 ± 1.05) completed a walking task in which they had to place their feet on irregularly placed targets wearing eye tracking glasses.Outcomes and resultsIndividuals with DCD walked slower and demonstrated a different gaze strategy compared to their neurotypical peers as they fixated almost each and every target sequentially. Typically developing individuals, on the other hand, directed gaze further along the path and often fixated areas around the targets.Conclusions and implicationsDespite adequate walking performance in daily situations in young adults with DCD, fundamental control deficits persist into adulthood.What this paper adds?This paper is the first to demonstrate differences in gaze behaviour between young adults with DCD and typically developing individuals in a task that resembles a task of daily living, as previous research focused on laboratory tasks. This is a valuable finding as DCD has a clear impact on the daily life. Furthermore, this study demonstrated that the fundamental control deficits of DCD persist into adulthood despite frequent performance and practice of these daily tasks. Lastly, these findings might contribute to the therapeutic potential of gaze training interventions to improve the daily functioning of children and adults with DCD.  相似文献   

10.
Patients with non-specific low back pain, or a similar disorder, may stiffen their trunk, which probably alters their walking coordination. To study the direct effects of increasing trunk stiffness, we experimentally increased trunk stiffness during walking, and compared the results with what is known from the literature about gait coordination with, e.g., low back pain. Healthy subjects walked on a treadmill at 3 speeds (0.5, 1.0 and 1.5 m/s), in three conditions (normal, while contracting their abdominal muscles, or wearing an orthopedic brace that limits trunk motions). Kinematics of the legs, thorax and pelvis were recorded, and relative Fourier phases and amplitudes of segment motions were calculated. Increasing trunk stiffness led to a lower thorax–pelvis relative phase, with both a decrease in thorax–leg relative phase, and an increase in pelvis–leg relative phase, as well as reduced rotational amplitude of thorax relative to pelvis. While lower thorax–pelvis relative phase was also found in patients with low back pain, higher pelvis–leg relative phase has never been reported in patients with low back pain or related disorders. These results suggest that increasing trunk stiffness in healthy subjects causes short-term gait coordination changes which are different from those seen in patients with back pain.  相似文献   

11.
While epidemiologic data suggests that one in four older adults have difficulty performing stooping and crouching (SC) tasks, little is known about how aging affects SC performance. This study investigated differences between young and older adults in lower limb kinematics and underfoot center of pressure (COP) measures when performing a series of SC tasks. Twelve healthy younger and twelve healthy older participants performed object-retrieval tasks varying in: (1) initial lift height, (2) precision demand, and (3) duration. Whole-body center of mass (COM), underfoot COP, and hip and knee angular kinematics (maximum angles and velocities) were analyzed. Compared to younger, older participants moved slower when transitioning into and out of pick-up postures that were characterized by less hip and knee flexion. Older participants also showed a diminished ability to adapt to the changing postural demands of each set of tasks. This was especially evident during longer tasks, whereby older individuals avoided high knee flexion crouching postures that were commonly used by younger participants. Older adults also tended to exhibit faster and more frequent COP trajectory adjustments in the anterior–posterior direction. It is likely that limitations in physical characteristics such as lower limb strength and range of motion contributed to these differences.  相似文献   

12.
Female recreational runners are 2–3 times more likely to suffer from knee injury compared with male runners. However, the exact reason for this gender difference regarding knee injury remains unclear. Our study aimed to investigate gender differences in coordination variability between shank and rearfoot during running using statistical parametric mapping (SPM). Eleven healthy males and eleven healthy females ran on a treadmill. A modified vector coding technique procedure was used to create joint coupling between shank internal/external rotation and rearfoot eversion/inversion. The standard deviation of each coupling was computed as a measure of coordination variability during the stance phase. All trajectory data of coordination variability between genders were analyzed using a two-sample t-test of SPM. No differences in the normalized spatiotemporal parameters of speed, cadence and step length were found between males and females. SPM showed no significant differences between the genders in coordination variability. This study demonstrated that coordination variability between the shank and rearfoot during running may not be associated with the different incidence rates of knee injuries among male and female participants.  相似文献   

13.
Three experiments examined age-related differences in irrelevant-speech effects. Younger and older adults were required to recall short prose texts or lists of semantically related words presented visually together with distractor speech. In all experiments, older adults made more semantically related intrusion errors from the irrelevant speech than younger adults. Results of a source memory test suggested that these age-related differences in interference are most likely due to both inhibitory deficits and source-monitoring problems. The results lend partial support to the inhibition deficit theory of cognitive aging.  相似文献   

14.
Donker SF  Beek PJ 《Acta psychologica》2002,110(2-3):265-288
The present study focuses on interlimb coordination in walking with an above-knee prosthesis using concepts and tools of dynamical systems theory (DST). Prosthetic walkers are an interesting group to investigate from this theory because their locomotory system is inherently asymmetric, while, according to DST, coordinative stability may be expected to be reduced as a function of the asymmetry of the oscillating components. Furthermore, previous work on locomotion motivated from DST has shown that the stability of interlimb coordination increases with walking velocity, leading to the additional expectation that the anticipated destabilizing effect of the prosthesis-induced asymmetry may be diminished at higher walking velocities. To examine these expectations, an experiment was conducted aimed at comparing interlimb coordination during treadmill walking between seven participants with an above-knee prosthesis and seven controls across a range of walking velocities. The observed gait patterns were analyzed in terms of standard gait measures (i.e., absolute and relative swing, stance and step times) and interlimb coordination measures (i.e., relative phase and frequency locking). As expected, the asymmetry brought about by the prosthesis led to a decrease in the stability of the coordination between the legs as compared to the control group, while coordinative stability increased with increasing walking velocity in both groups in the absence of a significant interaction. In addition, the 2:1 frequency coordination between arm and leg movements that is generally observed in healthy walkers at low walking velocities was absent in the prosthetic walkers. Collectively, these results suggest that both stability and adaptability of coordination are reduced in prosthetic walkers but may be enhanced by training them to walk at higher velocities.  相似文献   

15.
The aim of this study was to investigate interlimb coordination in young and older adults with and without a history of falls during the combined task of walking and prehension with different levels of manual task difficulty. Participants walked on a pathway and grasped a dowel. A vector coding technique evaluated coordination patterns. The coordination pattern was not affected by the difficulty level of the manual task. Older adults seemed to prioritize the movement of the right shoulder to grasp the dowel and then ‘froze’ the movement of the other joint (left shoulder) not directly involved in the grasping task. The preference to pick up the dowel in the double support phase and the increase in right shoulder phase made by older adults with a history of falls suggests an even greater decoupling between walking and prehension.  相似文献   

16.
The effects of body, neck, and trunk tilt on judgments of kinesthetic verticality were compared using 104 Ss. The results showed that head tilt and body tilt produced equal and significant E effects and that trunk tilt produced no significant E effect. The data were interpreted as showing that otolith information is an important determinant of the kinesthetic E effect.  相似文献   

17.
Differences between younger adults (mean age, 20.7 years) and older adults (mean age, 72.7 years) in dual-task performance were examined in 7 experiments in which the overlap between 2 simple tasks was systematically varied. The results were better fit by a task-switching model in which age was assumed to produce generalized slowing than by a shared-capacity model in which age was assumed to reduce processing resources. The functional architecture of task processing appears the same in younger and older adults. There was no evidence for a specific impairment in the ability of older adults to manage simultaneous tasks. There was evidence for both input and output interference, which may be greater in older adults.  相似文献   

18.
Age-related neural differences in affiliation and isolation   总被引:1,自引:0,他引:1  
While previous aging studies have focused on particular components of social perception (e.g., theory of mind, self-referencing), little is known about age-related differences specifically for the neural basis of perception of affiliation and isolation. This study investigates age-related similarities and differences in the neural basis of affiliation and isolation. Participants viewed images of affiliation (groups engaged in social interaction) and isolation (lone individuals), as well as nonsocial stimuli (e.g., landscapes), while making pleasantness judgments and undergoing functional neuroimaging (BOLD fMRI). Results indicated age-related similarities in response to affiliation and isolation in recruitment of regions involved in theory of mind and self-referencing (e.g., temporal pole, medial prefrontal cortex). Yet age-related differences also emerged in response to affiliation and isolation in regions implicated in the theory of mind, as well as self-referencing. Specifically, in response to isolation versus affiliation images, older adults showed greater recruitment than did younger adults of the temporal pole, a region that is important for retrieval of personally relevant memories utilized to understand others' mental states. Furthermore, in response to images of affiliation versus isolation, older adults showed greater recruitment than did younger adults of the precuneus, a region implicated in self-referencing. We suggest that age-related divergence in neural activation patterns underlying judgments of scenes depicting isolation versus affiliation may indicate that older adults' theory of mind processes are driven by retrieval of isolation-relevant information. Moreover, older adults' greater recruitment of the precuneus for affiliation versus isolation suggests that the positivity bias for emotional information may extend to social information involving affiliation.  相似文献   

19.
20.
Episodic memory is vulnerable to age-related change, with older adults demonstrating both impairments in retrieving contextual details and susceptibility to interference among similar events. Such impairments may be due in part to an age-related decline in the ability to encode distinct memory representations. Recent research has examined how manipulating stimulus properties to emphasize distinctiveness can reduce age-related deficits in memory. However, few studies have addressed whether learning strategies that differentially encourage distinctiveness processing attenuate age-related differences in episodic memory. In the present study, participants engaged in two incidental encoding tasks emphasizing either distinctiveness or similarity processing. Results demonstrated higher rates of recollection for stimuli studied under the distinctiveness task than the similarity task in younger but not older adults. These findings suggest a declining capacity for distinctiveness processing to benefit memory in older adults, and raise the possibility that strategies that enhance gist-based encoding may attenuate age-related memory deficits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号