首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Smooth pursuit (SP) is one of the precise oculomotor behaviors when tracking a moving object. Adaptation of SP is based on a visual-error driven motor learning process associated with predictable changes in the visual environment. Proper timing of a sensory signal is an important factor for adaptation of fine motor control. In this study, we investigated whether visual error timing affects SP gain adaptation. An adaptive change in SP gain is produced experimentally by repeated trials of a step-ramp tracking with 2 different velocities (double-velocity paradigm). The authors used the double-velocity paradigm where target speed changes 400 or 800 ms after the target onset. The results show that SP gain changed in a certain time window following adaptation. The authors suggest that SP adaptation shown in this study is associated with timing control mechanisms.  相似文献   

2.
Studies of time estimation have provided evidence that human time perception is determined by an internal clock containing a temporal oscillator and have also provided estimates of the frequency of this oscillator (Treisman, Faulkner, Naish, & Brogan, 1992; Treisman & Brogan, 1992). These estimates were based on the observation that when the intervals to be estimated are accompanied by auditory clicks that recur at certain critical rates, perturbations in time estimation occur. To test the hypothesis that the mechanisms that underlie the perception of time and those that control the timing of motor performance are similar, analogous experiments were performed on motor timing, with the object of seeing whether evidence for a clock would be obtained and if so whether its properties resemble those of the time perception clock. The prediction was made that perturbations in motor timing would be seen at the same or similar critical auditory click rates. The experiments examined choice reaction time and typing. The results support the hypothesis that a temporal oscillator paces motor performance and that this oscillator is similar to the oscillator underlying time perception. They also provide an estimate of the characteristic frequency of the oscillator.  相似文献   

3.
Models of motor control have highlighted the role of temporal predictive mechanisms in sensorimotor processing of speech and limb movement timing. We investigated how these mechanisms are affected in Parkinson’s disease (PD) while patients performed speech and hand motor reaction time tasks in response to sensory stimuli with predictable and unpredictable temporal dynamics. Results showed slower motor reaction times in PD vs. control in response to temporally predictable, but not unpredictable stimuli. This effect was driven by faster motor responses to predictable stimuli in control subjects; however, no such effect was observed in the PD group. These findings indicated the relationship between PD pathology and sensorimotor deficits in temporal predictive mechanisms of timing processing during speech production and hand movement.  相似文献   

4.
The two experiments of this study exploited individual variation in timing ability to ask whether the production of time intervals by different motor effectors and the judgement of perceptually based time intervals all share common timing mechanisms. In one task subjects produced a series of taps, attempting to maintain constant intervals between them. Individual differences in variability of the produced intervals correlated across the effectors of finger and foot. That is, people that were ‘good timers’ with one effector tended to be ‘good timers’ with another. Besides timing motor production, the subjects also judged durations of brief perceptual events. The acuity of perceptual judgements correlate substantially with regularity of motor production. Further results involving maximum speed of motor production suggested that variability of motor timing comes from two sources, one source in common with perception, and hence called clock variability, and the other source in common with motor speed, and hence called motor implementation variability. The second experiment showed that people high in skill on the piano were better at both types of timing on the average than control subjects with no expertise.  相似文献   

5.
Gentner (1987) has called into question the role of timing information in a number of motor behaviours. The status of an invariant relative timing model for handwriting, however, is still unclear, due to lack of previous studies that have applied appropriate tests to a suitable database.

This study employs a direct application of the tests proposed by Gentner (1987) to handwriting samples collected from adult subjects, to ascertain whether an invariant temporal pattern was retained across changes in size and speed of writing.

In line with Gentner's (1987) study of typing, the findings are strongly against the invariant relative timing model and bring into question motor program models that posit timing as an independent parameter.  相似文献   

6.
The processes whereby our brains continue to learn about a changing world in a stable fashion throughout life are proposed to lead to conscious experiences. These processes include the learning of top-down expectations, the matching of these expectations against bottom-up data, the focusing of attention upon the expected clusters of information, and the development of resonant states between bottom-up and top-down processes as they reach an attentive consensus between what is expected and what is there in the outside world. It is suggested that all conscious states in the brain are resonant states and that these resonant states trigger learning of sensory and cognitive representations. The models which summarize these concepts are therefore called Adaptive Resonance Theory, or ART, models. Psychophysical and neurobiological data in support of ART are presented from early vision, visual object recognition, auditory streaming, variable-rate speech perception, somatosensory perception, and cognitive-emotional interactions, among others. It is noted that ART mechanisms seem to be operative at all levels of the visual system, and it is proposed how these mechanisms are realized by known laminar circuits of visual cortex. It is predicted that the same circuit realization of ART mechanisms will be found in the laminar circuits of all sensory and cognitive neocortex. Concepts and data are summarized concerning how some visual percepts may be visibly, or modally, perceived, whereas amodal percepts may be consciously recognized even though they are perceptually invisible. It is also suggested that sensory and cognitive processing in the What processing stream of the brain obey top-down matching and learning laws that are often complementary to those used for spatial and motor processing in the brain's Where processing stream. This enables our sensory and cognitive representations to maintain their stability as we learn more about the world, while allowing spatial and motor representations to forget learned maps and gains that are no longer appropriate as our bodies develop and grow from infanthood to adulthood. Procedural memories are proposed to be unconscious because the inhibitory matching process that supports these spatial and motor processes cannot lead to resonance.  相似文献   

7.
Subjects performed a repetitive manual tapping task, attempting to match a given rate of auditory stimulus pulses, first with the pulses audible (synchronization) and then with the pulses turned off (continuation). In different sessions, the interstimulus interval (ISI) was selected from the range 175 to 825 msec in steps of 25 msec, with different ISI values presented in a random order. Across this range of ISI conditions, interresponse intervals (IRIs) exhibited alternating positive bias (too slow) and negative bias (too fast). We interpret this pattern of bias in terms of a discrete, or categorical, timing mechanism in motor timing. Categorical time production can be viewed as extending our conception of the timekeeper in Wing's (Wing & Kristofferson, 1973a, 1973b) two-process model of motor timing and may be related to the system of multiple clocks proposed by Kristofferson (1980) to explain a categorical pattern of variability measures in duration discrimination.  相似文献   

8.
Current interest in motor learning has prompted researchers to develop models that explain the events or mechanisms underlying skill acquisition. For the most part these models have focused on sensory and perceptual mechanisms. This commentary presents a theoretical explanation of effector system mechanisms of coordination. Options are available in the central control centers and their peripheral components, tonic and phasic motor units. Implications for the methodology of motor learning are discussed as they relate to a paramount factor responsible for prompting individuals to select the most efficacious effector system mechanism option.  相似文献   

9.
The present study investigated modality-specific differences in processing of temporal information in the subsecond range. For this purpose, participants performed auditory and visual versions of a rhythm perception and three different duration discrimination tasks to allow for a direct, systematic comparison across both sensory modalities. Our findings clearly indicate higher temporal sensitivity in the auditory than in the visual domain irrespective of type of timing task. To further evaluate whether there is evidence for a common modality-independent timing mechanism or for multiple modality-specific mechanisms, we used structural equation modeling to test three different theoretical models. Neither a single modality-independent timing mechanism, nor two independent modality-specific timing mechanisms fitted the empirical data. Rather, the data are well described by a hierarchical model with modality-specific visual and auditory temporal processing at a first level and a modality-independent processing system at a second level of the hierarchy.  相似文献   

10.
Subjects performed a repetitive manual tapping task, attempting to match a given rate of auditory stimulus pulses, first with the pulses audible (synchronization) and then with the pulses turned off (continuation). In different sessions, the interstimulus interval (ISI) was selected from the range 175 to 825 msec in steps of 25 msec, with different ISI values presented in a random order. Across this range of ISI conditions, interresponse intervals (IRIs) exhibited alternating positive bias (too slow) and negative bias (too fast). We interpret this pattern of bias in terms of a discrete, or categorical, timing mechanism in motor timing. Categorical time production can be viewed as extending our conception of the timekeeper in Wing’s (Wing’ & Kristofferson, 1973a, 1973b) two-process model of motor timing and may be related to the system of multiple clocks proposed by Kristofferson (1980) to explain a categorical pattern of variability measures in duration discrimination.  相似文献   

11.
Currently, it is unclear what model of timing best describes temporal processing across millisecond and second timescales in tasks with different response requirements. In the present set of experiments, we assessed whether the popular dedicated scalar model of timing accounts for performance across a restricted timescale surrounding the 1-second duration for different tasks. The first two experiments evaluate whether temporal variability scales proportionally with the timed duration within temporal reproduction. The third experiment compares timing across millisecond and second timescales using temporal reproduction and discrimination tasks designed with parallel structures. The data exhibit violations of the assumptions of a single scalar timekeeper across millisecond and second timescales within temporal reproduction; these violations are less apparent for temporal discrimination. The finding of differences across tasks suggests that task demands influence the mechanisms that are engaged for keeping time.  相似文献   

12.
13.
Several lines of research suggest that two distinct timing mechanisms are involved in temporal information processing: a sensory mechanism for processing of durations in the range of milliseconds and a cognitively controlled mechanism for processing of longer durations. The present study employed a dual-task approach and a sensory interference paradigm to further elucidate the distinct timing hypothesis. Experiment 1 used mental arithmetic as a nontemporal secondary task, Experiment 2 a memory search task, and Experiment 3 a visuospatial memory task. In Experiment 4, a loudness manipulation was applied. Mental arithmetic and loudness manipulation affected temporal discrimination of both brief and long intervals, whereas the two remaining tasks did not influence timing performance. Observed differences in interference patterns may be explained by some tasks being more difficult than others. The overall pattern of results argues against two qualitatively distinct timing mechanisms, but is consistent with attention-based cognitive models of human timing.  相似文献   

14.
Scalar Counters     
Poisson processes—random pacemakers driving accurate counters—are common models for timers. Such clocks get relatively more accurate the faster they go. This is not true of real clocks, where the relative error is approximately constant, an example of Weber's law known as scalar timing. This distinction was the core problem motivating Gibbon's Scalar Expectancy Theory. Since worse pacemakers cannot generate scalar timing, the necessary variance must be found elsewhere. This article reviews three failure modes of counters and shows that any one (or all together) provides a mechanism for scalar timing. Unique microdeviations from proportional timing in real data provide signatures of underlying machinery. This paper assays the maps between these signatures and those of stochastic counters, finding family resemblances that range from kissing cousins to clones.  相似文献   

15.
施动感是自我意识的一个重要部分。意向捆绑即人的动作及动作的感觉结果两者的时间点主观上被感知为相互靠近的现象,为研究人类的施动感提供了一个重要的测量手段。本文综述意向捆绑的实验范式和认知机制,发现目前线索整合理论能最好的解释意向捆绑现象。意向捆绑的范式可以用于临床疾病和跨文化的研究。今后还应深入研究意向捆绑机制及意向捆绑与施动感的关系。  相似文献   

16.
One of the questions yet to be fully understood is to what extent the properties of the sensory and the movement information interact to facilitate sensorimotor integration. In this study, we examined the relative contribution of the continuity compatibility between motor goals and their sensory outcomes in timing variability. The variability of inter-response intervals was measured in a synchronization-continuation paradigm. Participants performed two repetitive movement tasks whereby they drew circles either using continuous or discontinuous self-paced movements while receiving discrete or continuous auditory feedback. The results demonstrated that the effect of perceptual-motor continuity compatibility may be limited in self-paced auditory-motor synchronization as timing variability was not significantly influenced by the continuity of the feedback or the continuity compatibility between feedback and the movement produced. In addition, results suggested that the presence of salient perceptual events marking the completion of the time intervals elicited a common timing process in both continuous and discontinuous circle drawing, regardless of the continuity of the auditory feedback. These findings open a new line of investigation into the role of the discriminability and reliability of the event-based information in determining the nature of the timing mechanisms engaged in continuous and discontinuous self-paced rhythmic movements.  相似文献   

17.
Although temporal processing is used in a wide range of sensory and motor tasks, there is little evidence as to whether a single centralized clock or a distributed system underlies timing in the range of tens to hundreds of milliseconds. We investigated this question by studying whether learning on an auditory interval discrimination task generalizes across stimulus types, intervals, and frequencies. The degree to which improvements in timing carry over to different stimulus features constrains the neural mechanisms underlying timing. Human subjects trained on a 100- or 200-msec interval discrimination task showed an improvement in temporal resolution. This learning generalized to a perceptually distinct duration stimulus, as well as to the trained interval presented with tones at untrained spectral frequencies. The improvement in performance did not generalize to untrained intervals. To determine if spectral generalization was dependent on the importance of frequency information in the task, subjects were simultaneously trained on two different intervals identified by frequency. As a whole, our results indicate that the brain uses circuits that are dedicated to specific time spans, and that each circuit processes stimuli across nontemporal stimulus features. The patterns of generalization additionally indicate that temporal learning does not rely on changes in early, subcortical processing, because the nontemporal features are encoded by different channels at early stages.  相似文献   

18.
This paper presents a unified dynamical systems theory of motor learning and development and addresses the normative order and timing of activities in the infant motor development sequence. The emphasis is on the role of intention in modulating the epigenetic landscapes to the emerging forms of infant motor development and how the evolution of attractor landscape dynamics in infancy arises from the multiple time scales of constraints to action. The development of prone progression in infancy is exemplified as a case study and experimental hypotheses of the theory of attractor landscape dynamics and infant motor development are provided.  相似文献   

19.
《Cognition》2014,130(2):227-235
The sense of control over the consequences of one’s actions depends on predictions about these consequences. According to an influential computational model, consistency between predicted and observed action consequences attenuates perceived stimulus intensity, which might provide a marker of agentic control. An important assumption of this model is that these predictions are generated within the motor system. However, previous studies of sensory attenuation have typically confounded motor-specific perceptual modulation with perceptual effects of stimulus predictability that are not specific to motor action. As a result, these studies cannot unambiguously attribute sensory attenuation to a motor locus. We present a psychophysical experiment on auditory attenuation that avoids this pitfall. Subliminal masked priming of motor actions with compatible prime–target pairs has previously been shown to modulate both reaction times and the explicit feeling of control over action consequences. Here, we demonstrate reduced perceived loudness of tones caused by compatibly primed actions. Importantly, this modulation results from a manipulation of motor processing and is not confounded by stimulus predictability. We discuss our results with respect to theoretical models of the mechanisms underlying sensory attenuation and subliminal motor priming.  相似文献   

20.
Ballard DH  Hayhoe MM  Pook PK  Rao RP 《The Behavioral and brain sciences》1997,20(4):723-42; discussion 743-67
To describe phenomena that occur at different time scales, computational models of the brain must incorporate different levels of abstraction. At time scales of approximately 1/3 of a second, orienting movements of the body play a crucial role in cognition and form a useful computational level--more abstract than that used to capture natural phenomena but less abstract than what is traditionally used to study high-level cognitive processes such as reasoning. At this "embodiment level," the constraints of the physical system determine the nature of cognitive operations. The key synergy is that at time scales of about 1/3 of a second, the natural sequentiality of body movements can be matched to the natural computational economies of sequential decision systems through a system of implicit reference called deictic in which pointing movements are used to bind objects in the world to cognitive programs. This target article focuses on how deictic binding make it possible to perform natural tasks. Deictic computation provides a mechanism for representing the essential features that link external sensory data with internal cognitive programs and motor actions. One of the central features of cognition, working memory, can be related to moment-by-moment dispositions of body features such as eye movements and hand movements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号