首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Experimental studies investigating the contribution of conscious intention to the generation of a sense of agency for one’s own actions tend to rely upon a narrow definition of intention. Often it is operationalized as the conscious sensation of wanting to move right before movement. Existing results and discussion are therefore missing crucial aspects of intentions, namely intention as the conscious sensation of wanting to move in advance of the movement. In the present experiment we used an intentional binding paradigm, in which we distinguished between immediate (proximal) intention, as usually investigated, and longer standing (distal) intention. The results showed that the binding effect was significantly enhanced for distal intentions compared to proximal intentions, indicating that the former leads to stronger sense of agency. Our finding provides empirical support for a crucial distinction between at least two types of intention when addressing the efficacy of conscious intentions.  相似文献   

2.
《Cognition》1997,64(1):B1-B8
The concept of a conversion disorder (such as hysterical paralysis) has always been controversial (Ron, M.A. (1996). Somatization and conversion disorders. In: B.S. Fogel, R.S. Schiffer & S.M. Rao (Eds.), Neuropsychiatry. Williams and Wilkins, Baltimore, MD). Although the diagnosis is recognised by current psychiatric taxonomies, many physicians still regard such disorders either as feigned or as failure to find the responsible organic cause for the patient's symptoms. We report a woman with left sided paralysis (and without somatosensory loss) in whom no organic disease or structural lesion could be found. By contrast, psychological trauma was associated with the onset and recurrent exacerbation of her hemiparalysis. We recorded brain activity when the patient prepared to move and tried to move her paralysed (left) leg and when she prepared to move and did move her good (right) leg. Preparing to move or moving her good leg, and also preparing to move her paralysed leg, activated motor and/or premotor areas previously described with movement preparation and execution. The attempt to move the paralysed leg failed to activate right primary motor cortex. Instead, the right orbito-frontal and right anterior cingulate cortex were significantly activated. We suggest that these two areas inhibit prefrontal (willed) effects on the right primary motor cortex when the patient tries to move her left leg.  相似文献   

3.
Forming implementation intentions has been consistently shown to be a powerful self-regulatory strategy. As the self-regulation of thoughts is important for the experience of involuntariness in the hypnotic context, investigating the effectiveness of implementation intentions on the suppression of thoughts was the focus of the present study. Participants were randomly assigned to one of four conditions (hypnotic instruction plus implementation intention, hypnotic instruction, implementation intention, and control condition). Results showed that participants who received information included in the "Carleton Skill Training Program" and in addition formed implementation intentions improved their hypnotic responsiveness as compared to all of the other three groups on measures of objective responding and involuntary responding. Thus, in line with the nonstate or cognitive social-psychological view of hypnosis stating that an individual's hypnotic suggestibility is not dispositional but modifiable, our results suggest that hypnotic responsiveness can be heightened by furnishing hypnotic instructions with ad hoc implementation intentions.  相似文献   

4.
The purpose of the present study was to evaluate whether verbal fluency tasks may specifically induce relatively greater left than right hemispheric activation in the dorsolateral prefrontal cortex. The effectiveness of the manipulation was evaluated by EEG, which was recorded during performance of the verbal fluency task and during two control conditions, i.e., a baseline condition without cognitive demands, and a mental arithmetic task, respectively. The results demonstrate that the desired effect can only be achieved in individuals with good performance on the verbal fluency task. Good and poor performers do not only differ in lateral asymmetry, but also in the most affected region within the prefrontal cortex. Whereas good performers show relatively increased activation in the cortical region and hemisphere putatively most specialized for this kind of task (i.e., the left dorsolateral frontal cortex), poor performers show a marked shift of frontopolar asymmetry to the right.  相似文献   

5.
The present paper reviews data from two previous studies in our laboratory, as well as some additional new data, on the neuronal representation of movement and pain imagery in a subject with an amputated right arm. The subject imagined painful and non-painful finger movements in the amputated stump while being in a MRI scanner, acquiring EPI-images for fMRI analysis. In Study I (Ersland et al., 1996) the Subject alternated tapping with his intact left hand fingers and imagining "tapping" with the fingers of his amputated right arm. The results showed increased neuronal activation in the right motor cortex (precentral gyrus) when tapping with the fingers of the left hand, and a corresponding activation in the left motor cortex when imagining tapping with the fingers of the amputated right arm. Finger tappings of the intact left hand fingers also resulted in a larger activated precentral area than imagery "finger tapping" of the amputated right arm fingers. In Study II (Rosen et al., 2001 in press) the same subject imagining painful and pleasurable finger movements, and still positions of the fingers of the amputated arm. The results showed larger activations over the motor cortex for movement imagining versus imagining the hand being in a still position, and larger activations over the sensory cortex when imagining painful experiences. It can therefore be concluded that not only does imagery activate the same motor areas as real finger movements, but also that adding instructions of pain together with imaging moving the fingers intensified the activation compared with adding instructions about non-painful experiences. From these studies, it is clear that areas activated during actual motor execution to a large extent also are activated during mental imagery of the same motor commands. In this respect the present studies add to studies of visual imagery that have shown a similar correspondence in activation between actual object perception and imagery of the same object.  相似文献   

6.
7.
We examined the nature of representations underlying motor imagery and execution in a patient (CW) with bilateral parietal lesions. When imagining hand movements, CW executed the imagined motor act but was unaware of the movements. These movements were significantly more accurate than volitional movements for the left but not right hand. CW also exhibited preserved motor imagery for the left but not right hand. Consistent with previous accounts, these findings suggest that motor imagery may normally involve the inhibition of movements. CW's unawareness of movements during motor imagery may reflect inattention or misattribution of the unexpected sensory feedback. Furthermore, in line with current models of motor control, motor imagery may depend on the integrity of a "forward model" derived from motor outflow information to generate a prediction of the consequences of a motor command. Such predictions appear to be preserved for imagery of left but not right hand movements in CW. Action may additionally depend on precise updating of effector position derived from the comparison of predicted and actual sensory information. We propose that CW's impaired volitional movements may be attributable to the degradation of such an updating mechanism.  相似文献   

8.
In order to address previous controversies whether hand movements and gestures are linked to mental concepts or solely to the process of speaking, in the present study we investigate the neuropsychological functions of the entire spectrum of unimanual and bimanual hand movements and gestures when they either accompany speaking or when they act as the only means to communicate in the absence of speech. The results showed that the hand movement activity regarding all types of hand movements and gestures stayed constant with and without speaking. The analysis of the Structure of hand movements showed that executions shifted from in space hand movements with a phase structure during the condition without speech to more irregular on body hand movements without a phase structure during the co-speech condition. The gestural analysis revealed that pantomime gestures increase under conditions without speech whereas emotional motions and subject-oriented actions primarily occur when speaking. The present results provide evidence that the overall hand movement activity does not differ between co-speech conditions and conditions without speech, but that the hands adopt different neuropsychological functions. We conclude that the hands primarily externalise mental concepts in conditions without speaking but that their use shifts to more self-regulation and to endorsing verbal output with emotional connotations when they accompany speech.  相似文献   

9.
Recent studies have demonstrated specific interference effects between concurrent perception and action. In the following we address the possible causes of such effects by employing a continuous paradigm in which participants were asked to produce movements in a specified direction and to judge the direction of a concurrently presented stimulus motion. In such paradigms, a repulsion of the perceived by the produced movement direction is typically observed. The first question addressed in the current study was whether passive displacements of the hand would be sufficient for inducing the repulsion effect. This was done by sometimes moving the participants' hands with a robot. No repulsion effect was found for these passive movements, which shows that the integration of visual and proprioceptive information is not sufficient for repulsion to arise. However, repulsion was present for active movements, that is when participants intended to move. In a second experiment, participants' movements were sometimes unexpectedly blocked by a robot. No repulsion was observed in the blocked condition. We conclude that the intention to move (Experiment 1) and actual movement execution (Experiment 2) are both necessary preconditions for this type of specific interference to arise in continuous and concurrent perception-action tasks.  相似文献   

10.
Previous work with adults provides evidence that ‘intention’ used in processing simulated actions is similar to that used in planning and processing overt movements. The present study compared young adults and children on their ability to estimate distance reachability using a NOGO/GO paradigm in conditions of imagery only (IO) and imagery with actual execution (IE). Our initial thoughts were that whereas intention is associated with motivation and commitment to act, age-related differences could impact planning. Results indicated no difference in overall accuracy by condition within groups, and as expected adults were more accurate. These findings support an increasing body of evidence suggesting that the neurocognitive processes (in this case, intention) driving motor imagery and overt actions are similar, and as evidenced here, functioning by age 7.  相似文献   

11.
A neurological truism is that each side of the brain controls movements on the opposite side of the body. Yet some left hemisphere brain lesions cause bilateral impairment of complex motor function and/or ideomotor apraxia. We report that the left dorsal premotor cortex of normal right-handed people plays a fundamental role in sequential movement of both right and left hands. Subjects performed sequential finger movements during functional magnetic resonance imaging of the motor cortices. In right-handed subjects, the volume of activated dorsal premotor cortex showed a left hemispheric predominance during hand movements. We suggest that the observed left premotor dominance contributes to the lateralization found in lesion studies.  相似文献   

12.
In bimanual movements, some differences between the movements performed by the two hands cause interference, while others do not. Similarly, in choice between responses with the left and right hand some differences between the two movements increase RT, while others do not. It is suggested that both kinds of effects are, at least in part, due to the incompatibility between processes that determine characteristics of movements jointly for both hands and that are present during preparation as well as during execution. This hypothesis implies that during execution of one movement, programming of a different movement to be performed with the other hand should be impaired, as compared to a condition in which the successive movements of both hands are the same. This expectation was confirmed for finger movements of different forms where an effect on choice RT had been shown previously. On the other hand, interference between execution and programming is not to be expected when successive movements differ in characteristics that are likely to be specified separately for each hand, as indicated by a lacking effect in choice experiments. This expectation was confirmed for successive movements performed with different fingers of either hand as compared to movements performed with the same fingers.  相似文献   

13.
In bimanual movements, some differences between the movements performed by the two hands cause interference, while others do not. Similarly, in choice between responses with the left and right hand some differences between the two movements increase RT, while others do not. It is suggested that both kinds of effects are, at least in part, due to the incompatibility between processes that determine characteristics of movements jointly for both hands and that are present during preparation as well as during execution. This hypothesis implies that during execution of one movement, programming of a different movement to be performed with the other hand should be impaired, as compared to a condition in which the successive movements of both hands are the same. this expectation was confirmed for finger movements of different forms where an effect on choice RT had been shown previously. On the other hand, interference between execution and programming is not to be expected when successive movements differ in characteristics that are likely to be specified separately for each hand, as indicated by a lacking effect in choice experiments. This expectation was confirmed for successive movements performed with different fingers of either hand as compared to movements performed with the same fingers.  相似文献   

14.
Gozli DG  Brown LE 《Perception》2011,40(11):1309-1319
Our representation of the peripersonal space is tied to our representation of our bodies. This representation appears to be flexible and it can be updated to include the space in which tools work, particularly when the tool is actively used. One indicator of this update is the increased efficiency with which sensory events near the tool are processed. In the present study we examined the role of visuomotor control in extending peripersonal space to a common virtual tool-a computer mouse cursor. In particular, after participants were exposed to different spatial mappings between movements of the mouse cursor and movements of their hand, participants' performance in a motion-onset detection task was measured, with the mouse cursor as the stimulus. When participants, during exposure, had the ability to move the cursor efficiently and accurately (familiar hand-cursor mapping), they detected motion-onset targets more quickly than when they could not move the cursor at all during exposure (no hand-cursor mapping). Importantly, reversing the spatial correspondence between the movements of the hand and the cursor (unfamiliar hand-cursor mapping) during exposure, which was thought to preserve the ability to move the cursor (ie agency) while weakening the ability to make the movements efficiently and accurately (ie control), eliminated the detection-facilitation effect. These results provide evidence for the possible extension of peripersonal space to frequently used objects in the virtual domain. Importantly, these extensions seem to depend on the participant's knowledge of the dynamic spatial mapping between the acting limb and the visible virtual tool.  相似文献   

15.
The authors examined the effects of perturbations in action goal on bimanual grasp posture planning. Sixteen participants simultaneously reached for 2 cylinders and placed either the left or the right end of the cylinders into targets. As soon as the participants began their reaching movements, a secondary stimulus was triggered, which indicated whether the intended action goal for the left or right hand had changed. Overall, the tendency for a single hand to select end-state comfort compliant grasp postures was higher for the nonperturbed condition compared to both the perturbed left and perturbed right conditions. Furthermore, participants were more likely to plan their movements to ensure end-state comfort for both hands during nonperturbed trials, than perturbed trials, especially object end-orientation conditions that required the adoption of at least one underhand grasp posture to satisfy bimanual end-state comfort. Results indicated that when the action goal of a single object was perturbed, participants attempted to reduce the cognitive costs associated with grasp posture replanning by maintaining the original grasp posture plan, and tolerating grasp postures that result in less controllable final postures.  相似文献   

16.
The intention to execute a movement can modulate our perception of sensory events, and this modulation is observed ahead of both ocular and upper limb movements. However, theoretical accounts of these effects, and also the empirical data, are often contradictory. Accounts of “active touch”, and the premotor theory of attention, have emphasized how movement intention leads to enhanced perceptual processing at the target of a movement, or on the to-be-moved effector. By contrast, recent theories of motor control emphasize how internal “forward” model (FM) estimates may be used to cancel or attenuate sensory signals that arise as a result of self-generated movements. We used behavioural and functional brain imaging (functional magnetic resonance imaging, fMRI) to investigate how perception of a somatosensory stimulus differed according to whether it was delivered to a hand that was about to execute a reaching movement or the alternative, nonmoving, hand. The results of our study demonstrate that a somatosensory stimulus delivered to a hand that is being prepared for movement is perceived to have occurred later than when that same stimulus is delivered to a nonmoving hand. This result indicates that it takes longer for a tactile stimulus to be detected when it is delivered to a moving limb and may correspond to a change in perceptual threshold. Our behavioural results are paralleled by the results of our fMRI study that demonstrated that there were significantly reduced blood-oxygen-level-dependent (BOLD) responses within the parietal operculum and insula following somatosensory stimulation of the hand being prepared for movement, compared to when an identical stimulus was delivered to a nonmoving hand. These findings are consistent with the prediction of FM accounts of motor control that postulate that central sensory suppression of somatosensation accompanies self-generated limb movements, and with previous reports indicating that effects of sensory suppression are observed in higher order somatosensory regions.  相似文献   

17.
The intention to execute a movement can modulate our perception of sensory events, and this modulation is observed ahead of both ocular and upper limb movements. However, theoretical accounts of these effects, and also the empirical data, are often contradictory. Accounts of "active touch", and the premotor theory of attention, have emphasized how movement intention leads to enhanced perceptual processing at the target of a movement, or on the to-be-moved effector. By contrast, recent theories of motor control emphasize how internal "forward" model (FM) estimates may be used to cancel or attenuate sensory signals that arise as a result of self-generated movements. We used behavioural and functional brain imaging (functional magnetic resonance imaging, fMRI) to investigate how perception of a somatosensory stimulus differed according to whether it was delivered to a hand that was about to execute a reaching movement or the alternative, nonmoving, hand. The results of our study demonstrate that a somatosensory stimulus delivered to a hand that is being prepared for movement is perceived to have occurred later than when that same stimulus is delivered to a nonmoving hand. This result indicates that it takes longer for a tactile stimulus to be detected when it is delivered to a moving limb and may correspond to a change in perceptual threshold. Our behavioural results are paralleled by the results of our fMRI study that demonstrated that there were significantly reduced blood-oxygen-level-dependent (BOLD) responses within the parietal operculum and insula following somatosensory stimulation of the hand being prepared for movement, compared to when an identical stimulus was delivered to a nonmoving hand. These findings are consistent with the prediction of FM accounts of motor control that postulate that central sensory suppression of somatosensation accompanies self-generated limb movements, and with previous reports indicating that effects of sensory suppression are observed in higher order somatosensory regions.  相似文献   

18.
BACKGROUND/HYPOTHESIS: The degree of attention directed to a stimulus and the presence of anisometric representations can alter the perception of the magnitude of a stimulus. We wanted to learn if normal right-handed subjects' estimates of distance traveled are influenced by the right-left direction or hemispace of movements. METHODS: We had blindfolded participants estimate the distance their arm was moved in a rightward or leftward direction, in right and left hemispace. Since we wanted subjects to estimate the distance traveled rather than compute the distance between the start and finish points, the subjects' arms were passively moved in sinusoidal trajectories at a constant speed. RESULTS: Subjects estimated leftward movements as longer than rightward movements, but there was no effect of hemispace. COMMENTS/CONCLUSIONS: People often attend more to novel than routine conditions and therefore participants might have overestimated the distance associated with leftward versus rightward movement because right-handed people more frequently move their right hand in a rightward direction and learn to read and write using rightward movements. Thus, leftward movements might be more novel and more attended than rightward movements and this enhanced directional attention might have influenced estimates of magnitude (distance).  相似文献   

19.
Functional magnetic resonance imaging was used to investigate the neural correlates of passive listening, habitual speech and two modified speech patterns (simulated stuttering and prolonged speech) in stuttering and nonstuttering adults. Within-group comparisons revealed increased right hemisphere biased activation of speech-related regions during the simulated stuttered and prolonged speech tasks, relative to the habitual speech task, in the stuttering group. No significant activation differences were observed within the nonstuttering participants during these speech conditions. Between-group comparisons revealed less left superior temporal gyrus activation in stutterers during habitual speech and increased right inferior frontal gyrus activation during simulated stuttering relative to nonstutterers. Stutterers were also found to have increased activation in the left middle and superior temporal gyri and right insula, primary motor cortex and supplementary motor cortex during the passive listening condition relative to nonstutterers. The results provide further evidence for the presence of functional deficiencies underlying auditory processing, motor planning and execution in people who stutter, with these differences being affected by speech manner.  相似文献   

20.
When humans simultaneously perform different movements with both hands, each limb movement interferes with the contralateral limb movement (bimanual coupling). Previous studies on both healthy volunteers and patients with central or peripheral nervous lesions suggested that such motor constraints are tightly linked to intentional motor programs, rather than to movement execution. Here, we aim to investigate this phenomenon, by using a circles-lines task in which, when subjects simultaneously draw lines with the right hand and circles with the left hand, both the trajectories tend to become ovals (bimanual coupling effect). In a first group, we immobilized the subjects’ left arm with a cast and asked them to try to perform the bimanual task. In a second group, we passively moved the subjects’ left arm and asked them to perform voluntary movements with their right arm only. If the bimanual coupling arises from motor intention and planning rather than spatial movements, we would expect different results in the two groups. In the Blocked group, where motor intentionality was required but movements in space were prevented by immobilization of the arm, a significant coupling effect (i.e., a significant increase of the ovalization index for the right hand lines) was found. On the contrary, in the Passive group, where movements in space were present but motor intentionality was not required, no significant coupling effect was observed. Our results confirmed, in healthy subjects, the central role of the intentional and predictive operations, already evidenced in pathological conditions, for the occurrence of bimanual coupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号