首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study is concerned with the perceptual information about the body and space underlying the act of catching a ball. In a series of four experiments, subjects were asked to catch a luminous ball under various visual conditions. In general, catching in a normally illuminated room was contrasted with catching the luminous ball in an otherwise completely dark room. In the third and fourth experiments, intermediate conditions of visual information were included. The results suggest that it is possible to catch a ball with one hand when only the ball is visible, but performance is better when the subject has the benefit of a rich visual environment and two hands. The second experiment indicated that subject performance does improve with practice in the dark, but time spent in the darkened room itself doesn't result in a significant decrement in performance. Results of the third study suggest that vision of one's hand does not aid in the performance of this task whereas the presence of a minimal visual frame appears to aid performance. The final study examined the relation between catching performance and body sway under similar visual conditions. Results of this experiment imply that persons who exhibit relatively little postural sway in full-room lighting performed better at this catching task.  相似文献   

2.
The importance of vision for postural equilibrium has long been known; traditionally, this visual contribution to the control of posture has been analyzed primarily in terms of optical and retinal phenomena. Recently, however, there has been some suggestion that binocular and monocular fixation of identical stimuli have differential effects. Three experiments were conducted in order to measure self-generated movement (sway during quiet standing) of the body's center of gravity while field structure, ankle proprioception, and binocular/monocular fixation were varied. Field structure was varied from total darkness, to the presence of single and multiple LEDs in the dark, to full field structure (i.e., the richness of the feed back information was varied). Ankle proprioception was varied by changing foot position from side-by-side to heel-to-toe positions. Results indicate that (1) ankle-joint input is a significant factor in reducing sway, (2) binocular fixation attenuates sway relative to monocular fixation, under otherwise identical visual conditions, and (3) this difference persists in total darkness. Taken together, the data indicate that the visual influence on postural equilibrium results from a complex synergy that receives multimodal inputs. A simple optical/retinal explanation is not sufficient.  相似文献   

3.
The present study is concerned with the perceptual information about the body and space underlying the act of catching a ball. In a series of four experiments, subjects were asked to catch a luminous ball under various visual conditions. In general, catching in a normally illuminated room was contrasted with catching the luminous ball in an otherwise completely dark room. In the third and fourth experiments, intermediate conditions of visual information were included. The results suggest that it is possible to catch a ball with one hand when only the ball is visible, but performance is better when the subject has the benefit of a rich visual environment and two hands. The second experiment indicated that subject performance does improve with practice in the dark, but time spent in the darkened room itself doesn't result in a significant decrement in performance. Results of the third study suggest that vision of one's hand does not aid in the performance of this task whereas the presence of a minimal visual frame appears to aid performance. The final study examined the relation between catching performance and body sway under similar visual conditions. Results of this experiment imply that persons who exhibit relatively little postural sway in full-room lighting performed better at this catching task.  相似文献   

4.
The authors investigated the integration of alternate disparate monocular inputs for binocular perception in 1-handed catching experiments (N = 14, 32, 22, and 15 participants, respectively in Experiments 1-4). They varied the no-vision interval between alternate monocular samples to measure catching performance, and they compared the alternating monocular conditions with binocular and monocular conditions with equal no-vision intervals. They found no evidence of a binocular advantage for one-handed catching in the alternating monocular conditions. Performance in monocular and alternating monocular conditions did not differ across no-vision intervals ranging from 0-80 ms and was particularly worse than performance in binocular viewing conditions when the no-vision interval was 40 ms or more. The authors argue that the dissimilarity between disparate monocular inputs created by the approaching object limited the integration of those inputs and subsequent binocular perception.  相似文献   

5.
This study was designed to explore the limitations of tau (τ) as an explanatory construct for the timing of interceptive action. This was achieved by examining the effects of environmental structure and binocular vision on the timing of the grasp in a simple one-handed catch. In two experiments, subjects were required to catch luminous balls of different diameters (4, 6, 8 and 10 cm) in a completely darkened room. In the first experiment the influence of the presence vs. absence of an environmental background structure (both under monocular viewing) was tested, and in the second experiment the influence of monocular vs. binocular vision was examined. It was found that irrespective of the presence of environmental structure, an effect of ball size occurred in the monocular viewing conditions. That is, in monocular viewing conditions the grasp was initiated and completed earlier for the larger balls as compared to the smaller ones, while in the binocular viewing condition subjects behaved in accordance with a constant time to contact strategy: no effects of ball size were found. It is concluded that under binocular viewing a binocular information source is used, while in the monocular viewing condition a lower order information source like image size or image velocity is probably involved.  相似文献   

6.
The authors investigated the integration of alternate disparate monocular inputs for binocular perception in 1-handed catching experiments (N = 14, 32, 22, and 15 participants, respectively in Experiments 1-4). They varied the no-vision interval between alternate monocular samples to measure catching performance, and they compared the alternating monocular conditions with binocular and monocular conditions with equal no-vision intervals. They found no evidence of a binocular advantage for one-handed catching in the alternating monocular conditions. Performance in monocular and alternating monocular conditions did not differ across no-vision intervals ranging from 0-80 ms and was particularly worse than performance in binocular viewing conditions when the no-vision interval was 40 ms or more. The authors argue that the dissimilarity between disparate monocular inputs created by the approaching object limited the integration of those inputs and subsequent binocular perception.  相似文献   

7.
Three experiments were conducted to investigate the role of central and peripheral vision (CV and PV) in postural control. In Experiment 1, either the central or peripheral visual field were selectively stimulated using a circular random dot pattern that was either static or alternated at 5 Hz. Center of foot pressure (CoP) was used to examine postural sway during quiet standing under both CV and PV conditions. The results showed that, when the visual stimulus was presented in the periphery, the CoP area decreased and more so in the anterior-posterior (AP) than in the medio-lateral (ML) direction, indicating a characteristic directional specificity. There was no significant difference between the static and dynamic (alternating) conditions. Experiment 2 investigated the directional specificity of body sway found in Experiment 1 by having the trunk either be faced toward the stimulus display or perpendicularly to it, with the head always facing the display. The results showed that the stabilizing effect of peripheral vision was present in the direction of stimulus observation (i.e., the head/gaze direction), irrespective of trunk orientation. This suggested that head/gaze direction toward the stimulus presentation, rather than a biomechanical factor like greater mobility of the ankle joint in AP direction than in ML direction, was essential to postural stability. Experiment 3 further examined whether the stabilizing effect of peripheral vision found in Experiments 1 and 2 was caused because more dots (500) were presented as visual cues to the peripheral visual field than to the central visual field (20 dots) by presenting the same number of dots (20) in both conditions. It was found that, in spite of the equal number of dots, the postural sway amplitudes were larger for the central vision conditions than for the peripheral vision conditions. In conclusion, the present study showed that peripheral rather than central vision contributes to maintaining a stable standing posture, with postural sway being influenced more in the direction of stimulus observation, or head/gaze direction, than in the direction of trunk orientation, which suggests that peripheral vision operates primarily in a viewer-centered frame of reference characterized by the head/gaze direction rather than in a body-centered frame of reference characterized by the anatomical planes of the body.  相似文献   

8.
Four experiments investigated the relation between the development of binocular vision and infant spatial perception. Experiments 1 and 2 compared monocular and binocular depth perception in 4- and 5-month-old infants. Infants in both age groups reached more consistently for the nearer of two objects under binocular viewing conditions than under monocular viewing conditions. Experiments 3 and 4 investigated whether the superiority of binocular depth perception in 4-month-olds is related to the development of sensitivity to binocular disparity. Under binocular viewing conditions in Experiment 3, infants identified as disparity-sensitive reached more consistently for the nearer object than did infants identified as disparity-insensitive. The two groups' performances did not differ under monocular viewing conditions. These results suggest that, binocularly, the disparity-sensitive infants perceived the objects' distances more accurately than did the disparity-insensitive infants. In Experiment 4, infants were habituated to an object, then presented with the same object and a novel object that differed only in size. Disparity-sensitive infants showed size constancy by recovering from habituation when viewing the novel object. Disparity-insensitive infants did not show clear evidence of size constancy. These findings suggest that the development of sensitivity to binocular disparity is accompanied by a substantial increase in the accuracy of infant spatial perception.  相似文献   

9.
The effects of binocular and monocular viewing on spatial and temporal errors in one-handed catching were investigated in two experiments. The first experiment-using expert catchers-recorded more spatial errors under the monocular than under the binocular condition. No significant differences in the number of temporal errors were apparent. In a second experiment, which paradigm, relatively poor catchers were trained under both vision conditions. Its objective was to investigate whether the superior results obtained under the binocular condition in the first experiment, for the number of catches and number of spatial errors, could be attributed simply to the fact that subjects had more experience with binocular than monocular viewing. The following results occurred after a period of training (a) a significant reduction in the number of spatial errors under the monocular condition, reaching a level similar to that under the binocular condition; (b) no significant reduction in the number of spatial errors when subjects transferred from monocular to binocular viewing, and significantly more spatial errors when subjects transferred from binocular to monocular viewing; and (c) a training-sequence effect. The latter effect indicates that subjects had more benefit from training in the sequence monocular-binocular than vice versa. These findings are discussed in the context of the strategies of specificity of learning and use of multisources.  相似文献   

10.
Grasping tau.   总被引:6,自引:0,他引:6  
In the present study a direct manipulation of the optical expansion pattern was carried out. What happens to the timing of the grasp movements involved in catching a ball when optical expansion information is not veridically provided? By using 2 luminescent balls of constant size and a luminescent ball that could change its diameter during flight, it was possible to manipulate the rate of optical expansion directly. The results of 2 experiments (binocular vision in Experiment 1 and monocular vision in Experiment 2) showed that the time of the maximal closing velocity of the hand--which conforms to the prediction if Ss use retinal expansion information--was later for the deflating ball than for the balls of constant size. Adjustments to the aperture of the hand in response to the different ball sizes, especially the adjustment of the hand to the deflating ball (even though Ss were not aware that the ball was deflating during its approach), point to a finely attuned perception-action coupling.  相似文献   

11.
《Ecological Psychology》2013,25(4):199-222
Advancing or retreating so as to maintain a projectile's constant vertical optical velocity was suggested by Chapman (1968) as a possible basis for locomotion in ball catching. Three experiments examined this thesis. In Experiments I and 2, the positions of balls and catchers were videotaped to see if the movements of the catchers canceled optical acceleration. Such canceling was indeed observed until just prior to the catch for hand-thrown balls (Experiment 1). The monocular availability of the information predicts success with monocular viewing, confirmed in Experiment 2 with machine-thrown balls. In Experiment 3, observers judged whether a ball (represented as a moving dot on a computer screen) would land at, in front of, or behind them. Performance was above chance, but only some observers used acceleration. Together, the experiments provide broad, though not unequivocal, support for the utilization of optical acceleration to guide locomotion in catching.  相似文献   

12.
Illusory depth perception experienced in driving simulators is afforded by monocular depth information contained in visual displays. Presumably binocular convergence and binocular disparity, though useful for depth perception in real environments, may poorly contribute to illusory depth in a driving simulator. Instead, they may generate conflicting information by revealing the distance of the display screen and its flatness. Nevertheless, illusory depth induced by monocular information contained in visual displays usually produces enough immersion and realism to create the illusion of driving in a real environment.

Many authors have noted improved depth perception in paintings, photographs, and even in drawings when viewed monocularly. However, this effect, known as monocular advantage, has never been explored in driving simulation. The purpose of this experiment was to assess whether the effect might exist in driving simulation. It was expected that drivers would perceive distances in depth better and more accurately with a monocular than with a binocular viewing of the display. Distance estimates were evaluated for two types of driving maneuvers referred to as alignment and bisection. Results showed that when significant performance differences between monocular and binocular viewing conditions occurred, target cars were perceived farther in depth and more accurately using monocular vision.

Alternative viewing conditions using both eyes are discussed at the end of the article.  相似文献   

13.
Ecological theory asserts that the Ames' distorted room illusion (DRI) occurs as a result of the artificial restriction of information pickup. According to Gibson (1966, 1979), the illusion is eliminated when binocular vision and/or head movement are allowed. In Experiment 1, to measure the DRI, we used a size-matching technique employing discs placed within an Ames' distorted room. One hundred forty-four subjects viewed the distorted room or a control apparatus under four different viewing conditions (i.e., restricted or unrestricted head movement), using monocular and binocular vision. In Experiment 2, subjects viewed binocularly and were instructed to move freely while making judgments. Overall, the main findings of this study were that the DRI decreased with increases in viewing access and that the DRI persisted under all viewing conditions. The persistence of the illusion was felt to contradict Gibson's position.  相似文献   

14.
In the present research the authors examined the time course of binocular integration in goal-directed aiming and grasping. With liquid-crystal goggles, the authors manipulated vision independently to the right and left eyes of 10 students during movement preparation and movement execution. Contrary to earlier findings reported in catching experiments (I. Olivier, D. J. Weeks, K. L. Ricker, J. Lyons, & D. Elliott, 1998), neither a temporal nor a spatial binocular advantage was obtained in 1 grasping and 2 aiming studies. That result suggests that, at least in some circumstances, monocular vision is sufficient for the precise control of limb movements. In a final aiming experiment involving 3-dimensional spatial variability and no trial-to-trial visual feedback about performance, binocular vision was associated with greater spatial accuracy. Binocular superiority appeared to be most pronounced when participants were unable to adjust their limb control strategy or procedure on the basis of terminal feedback about performance.  相似文献   

15.
In the present research the authors examined the time course of binocular integration in goal-directed aiming and grasping. With liquid-crystal goggles, the authors manipulated vision independently to the right and left eyes of 10 students during movement preparation and movement execution. Contrary to earlier findings reported in catching experiments (I. Olivier, D. J. Weeks, K. L. Ricker, J. Lyons, & D. Elliott, 1998), neither a temporal nor a spatial binocular advantage was obtained in 1 grasping and 2 aiming studies. That result suggests that, at least in some circumstances, monocular vision is sufficient for the precise control of limb movements. In a final aiming experiment involving 3-dimen- sional spatial variability and no trial-to-trial visual feedback about performance, binocular vision was associated with greater spatial accuracy. Binocular superiority appeared to be most pronounced when participants were unable to adjust their limb control strategy or procedure on the basis of terminal feedback about performance.  相似文献   

16.
Individual studies have shown that visuomotor coordination and aspects of binocular vision, such as stereoacuity and dynamic vergence control, continue to improve in normally developing children between birth and early teenage years. However, no study has systematically addressed the relationship between the development of binocular vision and fine manipulation skills. Thus, the aim of this cross-sectional study was to characterize performance of complex manipulation tasks during binocular and monocular viewing. Fifty-two children, between 5 and 13 years old, performed 2 manipulation tasks: peg-board and bead-threading under randomized viewing conditions. Results showed that binocular viewing was associated with a significantly greater improvement in performance on the bead-threading task in comparison to the peg-board task and the youngest children showed the greatest decrement in task performance under the monocular viewing condition when performing the bead-threading task. Thus, the role of binocular vision in performance of fine manipulation skills is both task- and age-dependent. These findings have implications for assessment of visuomotor skills in children with abnormal binocular vision, which occurs in 2–3% of otherwise typically developing children.  相似文献   

17.
We carried out three experiments to examine the influence of field of view and binocular viewing restrictions on absolute distance perception in real-world indoor environments. Few of the classical visual cues provide direct information for accurate absolute distance judgments to points in the environment beyond about 2 m from the viewer. Nevertheless, in previous work it has been found that visually directed walking tasks reveal accurate distance estimations in full-cue real-world environments to distances up to 20 m. In contrast, the same tasks in virtual environments produced with head-mounted displays (HMDs) show large compression of distance. Field of view and binocular viewing are common limitations in research with HMDs, and have been rarely studied under full pictorial-cue conditions in the context of distance perception in the real-world. Experiment 1 showed that the view of one's body and feet on the floor was not necessary for accurate distance perception. In experiment 2 we manipulated the horizontal and the vertical field of view along with head rotation and found that a restricted field of view did not affect the accuracy of distance estimations when head movement was allowed. Experiment 3 showed that performance with monocular viewing was equal to that with binocular viewing. These results have implications for the information needed to scale egocentric distance in the real-world and reduce the support for the hypothesis that a limited field of view or imperfections in binocular image presentation are the cause of the underestimation seen with HMDs.  相似文献   

18.
M Gur 《Perception》1991,20(5):645-654
The conviction that time-varying signals are essential for normal visual perception was recently challenged by Bolanowski and Doty who observed that no 'blankouts' occurred in the binocularly viewed Ganzfeld. They suggested that monocularly perceived fading is caused by the eye in darkness suppressing the non-Ganzfeld-viewing eye. In the present paper, fade-out perception under monocular and binocular Ganzfeld viewing is compared, and the effect of the free eye on the Ganzfeld-viewing eye is tested directly. Results show that fading takes place under both monocular and binocular viewing. The data reenforce the view that transient inputs are necessary for maintaining visual perception. It is also shown that there are two Ganzfeld-related phenomena--fade-out and blackout. Fade-out, a slow gradual loss of brightness and of saturation perception, is observed by all subjects under both monocular and binocular viewing, and is affected by the light intensity and wavelength. It is probably retinal in origin. Blackout, a brief intermittent loss of all visual sensation, is experienced by some subjects in the monocular Ganzfeld only and is not appreciably affected by the light intensity or wavelength. It may be caused by a central blocking of all input to the perceiving stage.  相似文献   

19.
M Eyeson-Annan  B Brown 《Perception》1992,21(6):813-823
The importance in mobility performance of the rate of presentation of visual information, binocular versus monocular vision, the use of multiple rather than single reference points, and local motion parallax was investigated in two experiments. In each experiment ten subjects walked a triangular mobility course in a totally darkened room; the only visible targets were light emitting diodes (LEDs), mounted on poles, at the apices of the triangle. The LEDs were mounted so that one or two could be used in a trial; if two were used the distance between them was varied horizontally (in experiment 1) and vertically (in experiment 2). The subjects walked around the course under a range of conditions, including two 'optimal trials' in full light. The LEDs were flashed for 1 ms at frequencies of 0.5, 1 and 5 Hz in experiment 1 and at 1 and 5 Hz in experiment 2. Mobility was measured with the use of an ultrasonic locator system which measured the subject's position on the course 10 times per second. The mean velocity of the subject in traversing the course was significantly reduced when the flash rate was slower, when the subject had one eye occluded, or when there was only one LED on the pole; when the spacing between the LEDs was varied, either vertically or horizontally performance was unaffected. These results imply that the frequency of updating of visual information is important in determining mobility performance, as are binocular cues, but that local motion parallax is not important. The number of LEDs on each pole had a significant effect on mobility performance an 'object' (two lights) gave more information than a point reference.  相似文献   

20.
《Visual cognition》2013,21(2):113-142
Vision is critical for the efficient execution of prehension movements, providing information about: The location of a target object with respect to the viewer; its spatial relationship to other objects; as well as intrinsic properties of the object such as its size and orientation. This paper reports three experiments which examined the role played by binocular vision in the execution of prehension movements. Specifically, transport and grasp kinematics were examined for prehension movements executed under binocular, monocular, and no vision (memory-guided and open-loop) viewing conditions. The results demonstrated an overall advantage for reaches executed under binocular vision; movement duration and the length of the deceleration phase were longer, and movement velocity reduced, when movements were executed with monocular vision. Furthermore, the results indicated that binocular vision is particularly important during “selective” reaching, that is reaching for target objects which are accompanied by flanker objects. These results are related to recent neuro psychological investigations suggesting that stereopsis may be critical for the visual control of prehension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号