首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
When the normal constancy process on which the apparent immobility of the visualfield during head movements is based was strengthened by the same method that produces adaptation to abnormal conditions in the constancy of visual direction, and when this training of the normal constancy process immediately preceded experimental adaptation, the effectiveness of the latter was diminished. This result applied not only to adaptation to horizontal field displacement and to vertical field displacement during turning of the head, but also to vertical field displacement during nodding of the head, a condition to which adaptation was here demonstrated for the first time.  相似文献   

2.
Hay and Sawyer recently demonstrated that the constancy of visual direction (CVD) also operates for near targets. A luminous spot in the dark, 40 cm from the eyes, was perceived as stationary when S nodded his head. This implies that CVD takes target distance, as well as head rotation, into account as a stationary environment is perceived during head movements. Distance is a variable in CVD because, during a turning or nodding of the head, the eyes become displaced relative to the main target direction, the line between the target and the rotation axis of the head. This displacement of the eyes during head rotation causes an additional change in the target direction, i.e., a total angular change greater than the angle of the head rotation. The extent of this additional angular displacement is greater the nearer the target. We demonstrated that the natural combination of accommodation and convergence can supply the information needed by the nervous system to compensate for this additional target displacement. We also found that wearing glasses that alter the relation between these oculomotor adjustments and target distance produces an adaptation in CVD. An adaptation period of 1.5 h produced a large adaptation effect. This effect was not entirely accounted for by an adaptation in distance perception. Measurements of the alteration between oculomotor cues and registered distance with two kinds of tests for distance perception yielded effects significantly smaller than the effect measured with the CVD test. We concluded that the wearing of the glasses had also produced an adaptation within CVD.  相似文献   

3.
Adaptation in the constancy of visual direction can be obtained under two radically different conditions, called eye-movement adaptation and field adaptation. Adaptation resulting from these conditions and from a “normal” condition was measured with a newly developed estimation test. Eye-movement adaptation was found to cause an alteration of compensatory eye movements. It apparently consists of a changed evaluation of eye movements, as demonstrated by two different pointing tests. A form test where the shape of a large oblong is set to look square also confirmed this interpretation. After field adaptation, a pointing test did not register a change, but an adaptation effect could be measured with a forward direction test. This test and a square test where no eye movements were permitted proved to be specific to field adaptation; they measured no effect after eye-movementadaptation. The normal adaptation condition Was apparently equivalent to the eye-movement adaptation condition. Its effect could be measured only with a pointing test. When we changed the normal adaptation condition so that frequent saccades were made during head turning, strong effects were measured with the two tests that were specific to field adaptation.  相似文献   

4.
Adaptation to vertical field displacements dependent on head turning about a vertical axis was demonstrated under two conditions, rapid training with 100 head movements and 1-h-long training with continuous head turning. The effect of rapid training was measured with the slant estimation method. Adaptation after the longer training was ascertained by comparing the uncertainty ranges for apparent target immobility before and after the adaptation period. Adaptation to field displacements in directions parallel to the plane of the head rotation obtained under corresponding conditions was also measured and found to be somewhat greater than adaptation to vertical field displacements. The result of work by Wallach and Frey that adaptation to field displacement in the direction with the head rotation is greater than to displacement against it was corroborated. While the previous result had, been obtained with rapid adaptation and with the slant estimation method, we confirmed it with 1-h training and by measuring the uncertainty ranges before and after the adaptation period.  相似文献   

5.
Adaptation in the constancy of visual direction had previously been obtained by causing a large or a small visible area representing the environment to be objectively displaced in dependence on head movements. No stationary objects were permitted to be visible. Now experiments are reported in which displacements of a large patterned field, with the subject fixating a stationary mark in its center, led to adaptation. In these experiments, objective displacements of the environment were given by image displacements on the retina. Adaptation also resulted when the large field was stationary and only the fixation mark was displaced. Here the objective displacement was given by the rate of pursuit eye movements.  相似文献   

6.
Adaptation to field displacement during head movements in the direction with the head rotation and in the direction against it was produced under otherwise identical conditions and compared; the field displacement rate was also varied. A rapid training procedure was used, and a novel one-trial test was employed that could measure the adaptation well enough to compare the effects of various training conditions. The one-trial test measured the magnitude of one of the manifestations of adaptation, the apparent displacement of a stationary target during head movements. This apparent horizontal target displacement was transformed into an oblique one by having the head movements that brought forth the apparent target displacement simultaneously cause an objective vertical target displacement. The slant of the resultant apparent motion path varied with the magnitude of the apparent horizontal target displacement. It was measured by having S reproduce its slant angle. It was found that adaptation to field displacement in the direction with the head rotation was consistently greater than adaptation to the opposite displacement conditions. An explanation for this result is offered.  相似文献   

7.
Evidence is presented that the perceived immobility of the environment during tilting of the head from side to side results from a compensating process. This compensating process operates well only when peripheral vision is present. An objectively stationary environment was, for instance, not perceived as immobile during head tilting when vision was confined to the macular region of the retina. The compensating process could be rapidly altered by exposure to environmental tilting during and dependent on head tilting. Such adaptation had the result that some environmental tilting that normally is perceived led to apparent immobility.  相似文献   

8.
A series of experiments investigating the constancy of perceived direction was conducted. Experiments 1, 2, and 3 indicated that the perception of direction, while close to constancy, exhibited a consistent departure from constancy of approximately 2.5 deg. Experiments 4 and 5 investigated the departure from constancy in terms of the information of the position of the eyes within the head and the information of the retinal area (local sign) being stimulated. The results of these experiments indicated that the departure from constancy was a function of the underestimation of the position of the eyes within the head.  相似文献   

9.
Werner A 《Perception》2006,35(9):1171-1184
In real scenes, surfaces in different depth planes often differ in the luminance and chromatic content of their illumination. Scene segmentation is therefore an important issue when considering the compensation of illumination changes in our visual perception (lightness and colour constancy). Chromatic adaptation is an important sensory component of colour constancy and has been shown to be linked to the two-dimensional spatial structure of a scene (Werner, 2003 Vision Research 43 1611 - 1623). Here, the question is posed whether this cooperation also extends to the organisation of a scene in depth. The influence of depth on colour constancy was tested by introducing stereo disparity, whereby the test patch and background were perceived in either the same or one of five different depth planes (1.9-57 min of arc). There were no additional cues to depth such as shadows or specular highlights. For consistent illumination changes, colour constancy was reduced when the test patch and background were separated in depth, indicating a reduction of contextual influences. An interaction was found between the influences of stereo depth and spatial frequency on colour constancy. In the case of an inconsistent illumination change, colour constancy was reduced if the test patch and background were in the same depth plane (2-D condition), but not if they were separated in depth (3-D condition). Furthermore, colour constancy was slightly better in the 3-D inconsistent condition than in the 2-D inconsistent condition. It is concluded that depth segmentation supports colour constancy in scenes with inconsistent illumination changes. Processes of depth segmentation are implemented at an early sensory stage of colour constancy, and they define visual regions within which the effects of illuminant changes are discounted for separately. The results support recent models that posit such implementation of scene segmentation in colour constancy.  相似文献   

10.
Counteradaptation, previously demonstrated in connection with adaptation in distance perception, was obtained after exposure to displaced visual direction. When S adapted to a laterally displacing wedge prism by walking during the exposure period, there was not only a change in the perceived visual direction, but also a change m the proprioceptively perceived walking direction. When S adapts to lateral displacement of the visual direction by looking at his stationary or his moving arm, visual adaptation is obtained in the latter, but not in the former, case (Held & Hein, 1958). We obtained a change in the proprioceptively perceived position of the arm when it was stationary during the exposure period, a condition which had not yielded visual adaptation, and a much smaller, not significant, change in the felt position in the case of the actively moved arm. In the present experiments, changes in proprioceptively perceived direction or position amounted to counteradaptation.  相似文献   

11.
In experiments designed to clarify the mechanisms underlying the normal stability of visual direction for stationary objects when voluntary saccades occur, Ss reported on the horizontal visual direction of a brief test [lash presented when the eye was at a specific point in the saccade (the trigger point) relative to a fixation target viewed and extinguished prior to the saccade. From these reports, PSEs (points of subjective equality) were calculated for the fixation target as measured by the test [lashes. The distance of the trigger point from the previous fixation position was systematically varied in each experiment. Different experiments required saccades of different lengths and directions. With the exception of the presentation of the test [lash the saccades were carried out in complete darkness so that the possible utilization of an extraretinal signal regarding the eye movement (change in eye position, the intention to turn the eye, or a change of attention related to the eye movement) in the determination of visual direction could be observed uncomplicated by a continuing visual context. According to classical theories, an extraretinal signal proportional to the change in eye position acts to maintain direction constancy by compensating for the Shift of the retinal image resulting from the movement of the eye. In general, direction constancy was not preserved in the present experiments, and thus the data would not be predicted by classical theories. However, the PSE varied with distance of the trigger point from the fixation target. Since this displacement of PSE from the trigger point was in the correct direction for compensation, the presence of an extraretinal signal was confirmed. However, the growth of this signal appears to be time-locked to the saccade rather than locked to eye position; it is suggested that this growth takes place over a time period which is longer than the duration of the saccade itself.  相似文献   

12.
Observers were adapted to simulated auditory movement produced by dynamically varying the interaural time and intensity differences of tones (500 or 2,000 Hz) presented through headphones. At lO-sec intervals during adaptation, various probe tones were presented for 1 sec (the frequency of the probe was always the same as that of the adaptation stimulus). Observers judged the direction of apparent movement (“left” or “right”) of each probe tone. At 500 Hz, with a 200-deg/sec adaptation velocity, “stationary” probe tones were consistently judged to move in the direction opposite to that of the adaptation stimulus. We call this result an auditory motion aftereffect. In slower velocity adaptation conditions, progressively less aftereffect was demonstrated. In the higher frequency condition (2,000 Hz, 200-deg/sec adaptation velocity), we found no evidence of motion aftereffect. The data are discussed in relation to the well-known visual analog-the “waterfall effect.” Although the auditory aftereffect is weaker than the visual analog, the data suggest that auditory motion perception might be mediated, as is generally believed for the visual system, by direction-specific movement analyzers.  相似文献   

13.
Two experiments investigated autoshaping in rats to localizable visual and auditory conditioned stimuli predicting response-independent food. In Experiment 1 considerable conditioned-stimulus approach behavior was generated by a localizable visual conditioned stimulus that was situated approximately 35 cm from the food tray. Using the same apparatus in Experiment 2 we found that the conditioned-stimulus approach was generated only to a visual conditioned stimulus and not to a localizable auditory conditioned stimulus even though subjects (1) could discriminate presentations of the auditory conditioned stimulus, (2) had associated it with food, (3) could localize it, and (4) would approach the auditory stimulus if this behavior constituted an instrumental response to food. The predominant conditioned responses to the auditory stimuli were goal tracking (entering the food tray) and orienting towards the food-paired conditioned stimulus by head turning and rearing and turning. These results imply that rats do not invariably approach a localizable appetitive Pavlovian conditioned stimulus but that stimulus-approach responses depend on the nature and modality of the conditioned stimulus.  相似文献   

14.
The mature visual system possesses mechanisms that enable invariant perception of the contrast of an object and its features as the object undergoes changes in distance. This phenomenon, which has been called contrast constancy, obtains at suprathreshold contrasts only. Some models of contrast constancy assume the presence of narrowband spatial-frequency channels. An implication of M.S. Banks, B.R. Stephens, and E.E. Hartmann (1985, Journal of Experimental Child Psychology, 40, 501-527) is that contrast constancy should not be observed at 6 weeks but may be observed at 12 weeks. We examined this implication by investigating the development of contrast constancy in 6- and 12-week-old infants. Two sine wave gratings, differing in spatial frequency by a factor of 3, were presented side-by-side. The contrast of one grating was varied in order to estimate the contrast at which preference for the two gratings was equal. The equal preference points for 6-week-olds were predictable from their contrast thresholds. The 12-week-olds' equal preference points for low-contrast stimuli were predictable from their contrast thresholds, but those for intermediate and high-contrast stimuli were not. Thus, if one accepts the assumption that equal preference in infants is analogous to apparent contrast matches in adults, these data imply that contrast constancy is observed at 12 weeks but not 6 weeks. The perceptual consequences of this developmental transition are discussed.  相似文献   

15.
Visual perception during eccentric gaze can be facilitated when a visual stimulus appears in front of the head direction. This study investigated the relative effects of gaze location and head direction on visual perception in central and peripheral vision. Participants identified the orientation of a T-shaped figure presented in the centre of a monitor and simultaneously localised a dot appearing in the periphery, while head direction relative to gaze location was to the left, right or centre. Effects of head direction were found only when the dot appeared far from the gaze fixation point, such that dot detection was superior when it appeared to the left (right) of fixation in the left (right) head direction. Experimental results indicated this was not due to a small shift of gaze location. Thus this study suggests that head direction influences visual perception particularly in peripheral vision where visual acuity decreases.  相似文献   

16.
The position constancy during head movement of a luminous spot in a dark room depends in part on the convergence state of the eyes. This supports a modified form of the theory that an optical-motion/head-motion comparator contributes to constancy. By incorporating convergence information, the comparator can allow [or the effect of parallax on the optical-motion/body-motion ratio.  相似文献   

17.
Brief experience with reliable spectral characteristics of a listening context can markedly alter perception of subsequent speech sounds, and parallels have been drawn between auditory compensation for listening context and visual color constancy. In order to better evaluate such an analogy, the generality of acoustic context effects for sounds with spectral-temporal compositions distinct from speech was investigated. Listeners identified nonspeech sounds—extensively edited samples produced by a French horn and a tenor saxophone—following either resynthesized speech or a short passage of music. Preceding contexts were “colored” by spectral envelope difference filters, which were created to emphasize differences between French horn and saxophone spectra. Listeners were more likely to report hearing a saxophone when the stimulus followed a context filtered to emphasize spectral characteristics of the French horn, and vice versa. Despite clear changes in apparent acoustic source, the auditory system calibrated to relatively predictable spectral characteristics of filtered context, differentially affecting perception of subsequent target nonspeech sounds. This calibration to listening context and relative indifference to acoustic sources operates much like visual color constancy, for which reliable properties of the spectrum of illumination are factored out of perception of color.  相似文献   

18.
A veridical estimate of viewing distance is required in order to determine the metric structure of objects from binocular stereopsis. One example of a judgment of metric structure, which we used in our experiment, is the apparently circular cylinder task (E B Johnston, 1991 Vision Research 31 1351-1360). Most studies report underconstancy in this task when the stimulus is defined purely by binocular disparities. We examined the effect of two factors on performance: (i) the richness of the cues to viewing distance (using either a naturalistic setting with many cues to viewing distance or a condition in which the room and the monitors were obscured from view), and (ii) the range of stimulus disparities (cylinder depths) presented during an experimental run. We tested both experienced subjects (who had performed the task many times before under full-cue conditions) and na?ve subjects. Depth constancy was reduced for the na?ve subjects (from 62% to 46%) when the position of the monitors was obscured. Under similar conditions, the experienced subjects showed no reduction in constancy. In a second experiment, using a forced-choice method of constant stimuli, we found that depth constancy was reduced from 64% to 23% in na?ve subjects and from 77% to 55% in experienced subjects when the same set of images was presented at all viewing distances rather than using a set of stimulus disparities proportional to the correct setting. One possible explanation of these results is that, under reduced-cue conditions, the range of disparities presented is used by the visual system as a cue to viewing distance.  相似文献   

19.
Perceptual constancy of visual motion is usually described as the degree of correspondence between physical and perceived characteristics of motion in the external world. To study it, one has to assess the relationship between physical motion, its retinal image, and its perception. We describe a quantitative estimation procedure for a measure K denoting the degree of perceptual constancy of background target motions noncollinear to the eye movements during ocular pursuit. The calculation of K is based on three vectors describing the target motion (1) as it is physically, (2) as it is mapped to the retina, and (3) as it is perceived, but only the direction of the perceptual motion vector has to be determined experimentally. K allows for quantitative comparison between experiments with a variety of parameters in visual motion displays.  相似文献   

20.
Colour constancy refers to the stable perception of object colour under changing illumination conditions. This problem has been reformulated as relational colour constancy, or the ability of the observer to discriminate between material changes and changes in illumination. It has been suggested that local cone excitation ratios play a prominent role in achieving such constancy. Here we show that perceptual colour constancy measured by achromatic adjustments is to a large part complete after 25 ms. This speaks against a prominent role for receptor adaptation, which takes significantly longer. We also found no difference in colour constancy between colour changes that were compatible with a change of illuminant, and between colour changes where local cone ratios were uncorrelated between the two illuminants. Our results show that constant cone ratios are not necessary for colour constancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号