首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many studies of cognition and perception use a visual mask to explore the dynamics of information processing of a target. Especially important in these applications is the time between the target and mask stimuli. A plot of some measure of target visibility against stimulus onset asynchrony is called a masking function, which can sometimes be monotonic increasing but other times is U-shaped. Theories of backward masking have long hypothesized that temporal integration of the target and mask influences properties of masking but have not connected the influence of integration with the shape of the masking function. With two experiments that vary the spatial properties of the target and mask, the authors provide evidence that temporal integration of the stimuli plays a critical role in determining the shape of the masking function. The resulting data both challenge current theories of backward masking and indicate what changes to the theories are needed to account for the new data. The authors further discuss the implication of the findings for uses of backward masking to explore other aspects of cognition.  相似文献   

2.
A brief display that is clearly visible when shown alone can be rendered invisible by the subsequent presentation of a second visual stimulus. Several recently described backward masking effects are not predicted by current theories of visual masking, including masking by four small dots that surround (but do not touch) a target object and masking by a surrounding object that remains on display after the target object has been turned off. A crucial factor in both of these effects is attention: almost no masking occurs if attention can be rapidly focused on the target, whereas powerful masking ensues if attention directed at the target is delayed. A new theory of visual masking, inspired by developments in neuroscience, can account for these effects, as well as more traditional masking effects. In addition, the new theory sheds light on related research, such as the attentional blink, inattentional blindness and change blindness.  相似文献   

3.
Geremek A  Spillmann L 《Perception》2008,37(5):740-746
Spatial and figural characteristics of backward masking were studied, with two collinear arcs presented end-to-end and serving as target and mask, respectively. Stimulus onset asynchrony was 50 ms while interstimulus interval was 0 ms. Mask exposure duration required for masking was determined as a function of target length with mask length as a parameter. The exposure duration of the mask required for complete masking varied directly with target length, but inversely with mask length. The fact that masking strength increased with mask duration while all other parameters were kept constant suggests that masking depended on stimulus termination asynchrony. Maximal masking occurred for target arcs as long as 5.0 deg of visual angle, exceeding previously reported distances. Misaligned or differently shaped stimuli produced less masking, suggesting that figural factors play a role in long-range backward masking.  相似文献   

4.
Introducing a figure into a masking flash results in visual backward masking under conditions where a homogeneous masking flash does not suppress target detection. It is possible to analyze the spatial effects of such a masking figure in terms of lateral inhibition. It is hypothesized that incorporating a figure into the masking flash changes the inhibitory pattern the mask produces in the visual system. The interaction between the firing pattern produced by the mask and the residual inhibition from the preceding target presentation results in a phenomenal representation different from that produced by either the target or the mask alone.  相似文献   

5.
Three experiments tested how the physical format and information content of forward and backward masks affected the extent of visual pattern masking. This involved using different types of forward and backward masks with target discrimination measured by percentage correct in the first experiment (with a fixed target duration) and by an adaptive threshold procedure in the last two. The rationale behind the manipulation of the content of the masks stemmed from masking theories emphasizing attentional and/or conceptual factors rather than visual ones. Experiment 1 used word masks and showed that masking was reduced (a masking reduction effect) when the forward and backward masks were the same word (although in different case) compared to when the masks were different words. Experiment 2 tested the extent to which a reduction in masking might occur due to the physical similarity between the forward and backward masks by comparing the effect of the same content of the masks in the same versus different case. The result showed a significant reduction in masking for same content masks but no significant effect of case. The last experiment examined whether the reduction in masking effect would be observed with nonword masks—that is, having no high-level representation. No reduction in masking was found from same compared to different nonword masks (Experiment 3). These results support the view that the conscious perception of a rapidly displayed target stimulus is in part determined by high-level perceptual/cognitive factors concerned with masking stimulus grouping and attention.  相似文献   

6.
Three experiments tested how the physical format and information content of forward and backward masks affected the extent of visual pattern masking. This involved using different types of forward and backward masks with target discrimination measured by percentage correct in the first experiment (with a fixed target duration) and by an adaptive threshold procedure in the last two. The rationale behind the manipulation of the content of the masks stemmed from masking theories emphasizing attentional and/or conceptual factors rather than visual ones. Experiment 1 used word masks and showed that masking was reduced (a masking reduction effect) when the forward and backward masks were the same word (although in different case) compared to when the masks were different words. Experiment 2 tested the extent to which a reduction in masking might occur due to the physical similarity between the forward and backward masks by comparing the effect of the same content of the masks in the same versus different case. The result showed a significant reduction in masking for same content masks but no significant effect of case. The last experiment examined whether the reduction in masking effect would be observed with nonword masks--that is, having no high-level representation. No reduction in masking was found from same compared to different nonword masks (Experiment 3). These results support the view that the conscious perception of a rapidly displayed target stimulus is in part determined by high-level perceptual/cognitive factors concerned with masking stimulus grouping and attention.  相似文献   

7.
An investigation was conducted into the interaction of the forward and backward masking effects of unpatterned visual stimuli. It was found that detection of a test spot was easier under conditions that should have provided both forward and backward masking than under either forward masking or backward masking alone. The implications for an integration theory of masking are discussed, and the findings are contrasted with findings on the interaction of forward and backward masking by dynamic visual noise.  相似文献   

8.
When letters are superimposed upon a pattern of black and white squares, they are easier to identify when the pattern is regular than when it is random. If backward masking consists of the superimposition of a masking pattern upon the decaying visual trace of a target display, a regular pattern should be less effective as a backward mask than a random pattern. This was found to be so for both multiple-letter and single-letter displays. This result is predicted by an integration theory of visual masking but not by an interruption theory.  相似文献   

9.
Utrocular discrimination, the ability to judge which eye has received monocular stimulation, was studied under conditions designed to reduce the salience of the cue mediating this discrimination. In one series of experiments, these conditions involved reducing the likelihood of motor command signals, overwhelming the motor command centers, and triggering motor command signals for both eyes. Those results indicate that utrocular discrimination is not mediated by ocular movements or command signals. In a second series of experiments, a visual masking paradigrn was used. A monocular test grating appeared superimposed upon a background of binocular masking noise, which was presented either simultaneously with the target or at some interval preceding or following the target (asynchronous masking). When presented simultaneously, the binocular masking noise interfered with utrocular performance, but only when the noise contained spatial frequencies near the test frequency. Masking functions obtained under conditions of asynchronous masking indicated that the time course of the forward and backward masking changed with spatial frequency. Finally, a sustained masking pattern that was ineffective in reducing utrocular performance could be made effective by pulsing the mask simultaneously with the target. Taken together, these results implicate a transient response to the target onset as a critical factor in generating the cue for successful utrocular discrimination. This conclusion may account for the fact that utrocular discrimination falls off for normal observers as the spatial frequency of the target grating increases above 4 cycles/deg.  相似文献   

10.
In a series of four experiments using rapid serial visual presentations of two target letters embedded in numeral distractors, with different numbers of display positions and with or without masking, we show that (1) the nonmonotonic, U-shaped attentional blink (AB) function, which occurs when all items are presented at the same display location, is eliminated in favor of a monotonic function when targets and distractors are presented randomly dispersed over four or nine adjacent positions; (2) the AB monotonicity is maintained with the spatially distributed presentation even when backward masks are used in all possible stimulus positions and when the location of the next item in sequence is predictable; and (3) the If-shaped AB is not due to position-specific forward or backward masking effects occurring at early levels of visual processing. We tentatively conclude that the U-shaped AB is primarily a function of the interruption of late visual processing produced when the item following the first target occurs at the same location. In order for the AB to severely disrupt performance, the item following the first target must be presented at the same location as the target so that it can serve both as a distractor and as a mask interrupting or interfering with subsequent visual processing.  相似文献   

11.
In a series of four experiments using rapid serial visual presentations of two target letters embedded in numeral distractors, with different numbers of display positions and with or without masking, we show that (1) the nonmonotonic, U-shaped attentional blink (AB) function, which occurs when all items are presented at the same display location, is eliminated in favor of a monotonic function when targets and distractors are presented randomly dispersed over four or nine adjacent positions; (2) the AB monotonicity is maintained with the spatially distributed presentation even when backward masks are used in all possible stimulus positions and when the location of the next item in sequence is predictable; and (3) the U-shaped AB is not due to position-specific forward or backward masking effects occurring at early levels of visual processing. We tentatively conclude that the U-shaped AB is primarily a function of the interruption of late visual processing produced when the item following the first target occurs at the same location. In order for the AB to severely disrupt performance, the item following the first target must be presented at the same location as the target so that it can serve both as a distractor and as a mask interrupting of interfering with subsequent visual processing.  相似文献   

12.
A briefly flashed target stimulus can become “invisible” when immediately followed by a mask—a phenomenon known as backward masking, which constitutes a major tool in the cognitive sciences. One form of backward masking is termed metacontrast masking. It is generally assumed that in metacontrast masking, the mask suppresses activity on which the conscious perception of the target relies. This assumption biases conclusions when masking is used as a tool—for example, to study the independence between perceptual detection and motor reaction. This is because other models can account for reduced perceptual performance without requiring suppression mechanisms. In this study, we used signal detection theory to test the suppression model against an alternative view of metacontrast masking, referred to as the summation model. This model claims that target- and mask-related activations fuse and that the difficulty in detecting the target results from the difficulty to discriminate this fused response from the response produced by the mask alone. Our data support this alternative view. This study is not a thorough investigation of metacontrast masking. Instead, we wanted to point out that when a different model is used to account for the reduced perceptual performance in metacontrast masking, there is no need to postulate a dissociation between perceptual and motor responses to account for the data. Metacontrast masking, as implemented in the Fehrer–Raab situation, therefore is not a valid method to assess perceptual–motor dissociations.  相似文献   

13.
Object substitution is a type of backward masking that occurs when a mask appears during visual search for a target. We tested the hypothesis that object substitution is an overwriting process triggered by attentional selection of the mask. Impeding attentional selection of a mask by embedding it in an array of distractors eliminated object substitution. Similarly, object substitution did not occur when the mask appeared in advance of the target and, therefore, could not capture attention during search for the target. However, masking was reinstated when the mask was revealed from background contours at the moment of target onset and could therefore capture attention during search. These observations demonstrate that attentional selection of the mask is a necessary step in this type of masking and suggest that object substitution is active overwriting of unattended information triggered by selection of other visual information at a nearby location.  相似文献   

14.
Experiments using a backward visual masking technique are described, in which the second (mask) stimulus is itself masked by a third stimulus, thus rendering guessing strategies, about target/mask relationships, difficult for subjects. Word-word and word-non-word sequences are used for the first two stimuli and it is shown that when the second stimulus resembles the first, either physically or phonologically, the severity of masking of the first is reduced. However, the target is not better reported when the mask word is semantically related to it. Consideration is given to the levels at which interaction between target and mask might occur.  相似文献   

15.
Visual backward masking not only is an empirically rich and theoretically interesting phenomenon but also has found increasing application as a powerful methodological tool in studies of visual information processing and as a useful instrument for investigating visual function in a variety of specific subject populations. Since the dual-channel, sustained-transient approach to visual masking was introduced about two decades ago, several new models of backward masking and metacontrast have been proposed as alternative approaches to visual masking. In this article, we outline, review, and evaluate three such approaches: an extension of the dual-channel approach as realized in the neural network model of retino-cortical dynamics (Ogmen, 1993), the perceptual retouch theory (Bachmann, 1984, 1994), and the boundary contour system (Francis, 1997; Grossberg & Mingolla, 1985b). Recent psychophysical and electrophysiological findings relevant to backward masking are reviewed and, whenever possible, are related to the aforementioned models. Besides noting the positive aspects of these models, we also list their problems and suggest changes that may improve them and experiments that can empirically test them.  相似文献   

16.
It has been established that diffuse red light partially suppresses the magnocellular (M) visual pathway. Previous research reported that metacontrast masking is reduced (improved accuracy) with a red background, consistent with a reduction in M pathway response from the mask. In contrast, a recent study used location backward masking by noise and found that accuracy decreased with a red background--theoretically due to suppression of the M pathway's initial localization of the target. The present study provides the first report examining the effect of red light on performance in a location backward masking by structure task. Results revealed a main effect of a red (as opposed to a green) background on reducing masking (improved accuracy) with a medium effect size (eta2 = .23). This effect was strongest at the 47- and 60-msec stimulus onset asynchronies. Results suggest that red light primarily decreases interference from the mask in location backward masking by structure.  相似文献   

17.
Object substitution masking is a form of visual backward masking in which a briefly presented target is rendered invisible by a lingering mask that is too sparse to produce lower image-level interference. Recent studies suggested the importance of an updating process in a higher object-level representation, which should rely on the processing of visual motion, in this masking. Repetitive transcranial magnetic stimulation (rTMS) was used to investigate whether functional suppression of motion processing would selectively reduce substitution masking. rTMS-induced transient functional disruption of cortical area V5/MT+, which is important for motion analysis, or V1, which is reciprocally connected with V5/MT+, produced recovery from masking, whereas sham stimulation did not. Furthermore, masking remained undiminished following rTMS over the region 2 cm posterior to V5/MT+, ruling out nonspecific effects of real stimulation and confirming regional specificity of the rTMS effect. The results suggest that object continuity via the normal function of the visual motion processing system might in part contribute to this masking. The relation of these findings to the reentrant processing view of object substitution masking and other visual phenomena is discussed.  相似文献   

18.
The identification of one, two, and four random letters was studied under three procedures: (1) backward masking by a visual noise; (2) concurrent masking by a visual noise; and (3) no masking. With backward masking the number of letters correctly identified was independent of the number presented. Direct judgments of the duration, brightness, contrast, sharpness, and texture of the letters were also made. Under backward masking the letters appeared to be on for a very brief duration, but with high apparent contrast. The results indicate that backward masking impairs identification by interrupting the stimulus processing, not by degrading the stimulus input.  相似文献   

19.
Printed letters were found to become increasingly susceptible to visual backward masking when presented to one side of the point of fixation: All masking was found to be a u-shaped function of the time interval separating the offset of the target from the onset of the masking figure. The interval at which maximum masking was observed, as well as the amount of masking observed, varied with the target-mask configuration studied. More masking was found when the ISI field was lighted than when it was not.  相似文献   

20.
Capacity limits are a hallmark of visual cognition. The upper boundary of our ability to individuate and remember objects is well known but—despite its central role in visual information processing—not well understood. Here, we investigated the role of temporal limits in the perceptual processes of forming “object files.” Specifically, we examined the two fundamental mechanisms of object file formation—individuation and identification—by selectively interfering with visual processing by using forward and backward masking with variable stimulus onset asynchronies. While target detection was almost unaffected by these two types of masking, they showed distinct effects on the two different stages of object formation. Forward “integration” masking selectively impaired object individuation, whereas backward “interruption” masking only affected identification and the consolidation of information into visual working memory. We therefore conclude that the inherent temporal dynamics of visual information processing are an essential component in creating the capacity limits in object individuation and visual working memory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号