共查询到4条相似文献,搜索用时 0 毫秒
1.
The chronometry of mental ability: An event-related potential analysis of an auditory oddball discrimination task 总被引:1,自引:0,他引:1
The relation between intelligence and speed of auditory discrimination was investigated during an auditory oddball task with backward masking. In target discrimination conditions that varied in the interval between the target and the masking stimuli and in the tonal frequency of the target and masking stimuli, higher ability participants (HA) displayed more accurate discriminations, faster response time, larger P300 amplitude, and shorter P300 and mismatch negativity (MMN) latency than lower ability participants (LA). Task difficulty effects demonstrated with variation in mask type indicate that the mask does not interfere with the detection of the deviant target stimulus, but rather that the target and mask are integrated as a single compound stimulus. The temporal effects suggest that the speed of accessing short-term memory is faster for HA than LA and, on the basis of the MMN latency, the effect is accomplished automatically, without focused attention. Moreover, the pattern of results obtained with these data support the view that the accuracy effects are determined by processing speed rather than discrimination ability. Comparator models that accommodate these effects are discussed. 相似文献
2.
When listening to speech in everyday-life situations, our cognitive system must often cope with signal instabilities such as sudden breaks, mispronunciations, interfering noises or reverberations potentially causing disruptions at the acoustic/phonetic interface and preventing efficient lexical access and semantic integration. The physiological mechanisms allowing listeners to react instantaneously to such fast and unexpected perturbations in order to maintain intelligibility of the delivered message are still partly unknown. The present electroencephalography (EEG) study aimed at investigating the cortical responses to real-time detection of a sudden acoustic/phonetic change occurring in connected speech and how these mechanisms interfere with semantic integration. Participants listened to sentences in which final words could contain signal reversals along the temporal dimension (time-reversed speech) of varying durations and could have either a low- or high-cloze probability within sentence context. Results revealed that early detection of the acoustic/phonetic change elicited a fronto-central negativity shortly after the onset of the manipulation that matched the spatio-temporal features of the Mismatch Negativity (MMN) recorded in the same participants during an oddball paradigm. Time reversal also affected late event-related potentials (ERPs) reflecting semantic expectancies (N400) differently when words were predictable or not from the sentence context. These findings are discussed in the context of brain signatures to transient acoustic/phonetic variations in speech. They contribute to a better understanding of natural speech comprehension as they show that acoustic/phonetic information and semantic knowledge strongly interact under adverse conditions. 相似文献
3.
In highly proficient, early bilinguals, behavioural studies of the cost of switching language or task suggest qualitative differences between language control and domain-general cognitive control. By contrast, several neuroimaging studies have shown an overlap of the brain areas involved in language control and domain-general cognitive control. The current study measured both behavioural responses and event-related potentials (ERPs) from bilinguals who performed picture naming in single- or mixed-language contexts, as well as an alphanumeric categorisation task in single- or mixed-task context. Analysis of switch costs during the mixed-context conditions showed qualitative differences between language control and domain-general cognitive control. A 2 × 2 ANOVA of the ERPs, with domain (linguistic, alphanumeric) and context (single, mixed) as within-participant factors, revealed a significant interaction, which also suggests a partly independent language-control mechanism. Source estimations revealed the neural basis of this mechanism to be in bilateral frontal-temporal areas. 相似文献