首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The authors investigated how expertise in motor skills that require fine postural control, such as gymnastics, influences postural regulation. Gymnasts and nongymnasts performed a postural stabilization task after anterior-posterior destabilization while looking at a target in front of them. The authors recorded and analyzed the center of pressure and the ankle, knee, and hip displacements. Gymnasts were able to react rapidly after destabilization to decrease their center of pressure and the angular movements. Moreover, they used their knees to stabilize posture, whereas the nongymnasts used their hips. These findings suggest that specific postural experience modifies the ability to coordinate and regulate posture. The authors discuss these results from an ecological perspective.  相似文献   

2.
The transition from sitting to walking is a major motor milestone for the developing postural system. This study examined whether this transition to walking impacts the previously established posture (i.e., sitting). Nine infants were examined monthly from sitting onset until 9 months post-walking. Infants sat on a saddle-shape chair either independently or with their right hand touching a stationary contact surface. Postural sway was measured by sway amplitude, variability, area, and velocity of the center of pressure trajectory. The results showed that for all the postural measures in the no-touch condition, a peak before or at walk onset was observed in all the infants. At the transition age, when peak sway occurred, infants' postural sway measures were significantly greater than at any other age. Further, infants' postural sway was attenuated by touch only at this transition. We suggest that this transient disruption in sitting posture results from a process involving re-calibration of an internal model for the sensorimotor control of posture so as to accommodate the newly emerging bipedal behavior of independent walking.  相似文献   

3.
Young adults are known to reduce their postural sway to perform precise visual search and laser pointing tasks. We tested if young adults could reduce even more postural and/or center of pressure sway to succeed in both tasks simultaneously. The methodology is novel because published pointing tasks usually require continuously looking at the pointed target and not exploring an image while pointing elsewhere at the same time. Twenty-five healthy young adults (23.2 ± 2.5 years) performed six visual tasks. In the free-viewing task, participants randomly explored images with no goal. In two visual search tasks, participants searched to locate objects (easy search task) or graphical details (hard search task). Participants additionally pointed a laser beam into a central circle (2°) or pointed the laser turned off. Postural sway and center of pressure sway were reduced complementarily – in various variables – to perform the visual search and pointing tasks. Unexpectedly, the pointing task influenced more strongly postural sway and center of pressure sway than the search tasks. Overall, the participants adopted a functional strategy in stabilizing their posture to succeed in the pointing task and also to fully explore images. Therefore, it is possible to inverse the strength of effects found in the literature (usually stronger for the search task) in modulating the experimental methodology. In search tasks more than in free-viewing tasks, participants mostly rotated their eyes and head, and not their full body, to stabilize their posture. These results could have implications for shooting activities, video console games and rehabilitation most particularly.  相似文献   

4.
This article is a report on 3 experiments designed so that the role of virtual time-to-collision (VTC), which specifies the spatiotemporal proximity of the center of pressure to the postural stability boundary in the regulation of posture in upright stances, could be examined. Virtual time-to-collision was estimated for normal upright stance with different bases of support, and for postural oscillations in which the speed of movement and instructional constraints on the coordination mode used were manipulated. The results showed that virtual time-to-collision was predictably reduced as (a) the base of support was reduced, (b) the speed of the postural oscillation was increased, and (c) the number of biomechanical degrees of freedom regulated in the coordination mode increased. Over a range of task conditions, the coefficients of variation of the VTC time-series were significantly lower than the coefficients of variation for the velocity and acceleration time series of the center of pressure. The absolute values of VTC increased with the increment of the ground reaction forces a performer generated to avoid falling while approaching the stability boundary. These findings are consistent with the proposition that VTC may serve as an organizing informational control parameter for posture.  相似文献   

5.
The authors asked how sport expertise modulates visual field dependence and sensory reweighting for controlling posture. Experienced soccer athletes, ballet dancers, and nonathletes performed (a) a Rod and Frame test and (b) a 100-s bipedal stance task during which vision and proprioception were successively or concurrently disrupted in 20-s blocks. Postural adaptation was assessed in the mean center of pressure displacement, root mean square of center of pressure velocity and ankle muscles integrated electromyography activity. Soccer athletes were more field dependent than were nonathletes. During standing, dancers were more destabilized by vibration and required more time to reweigh sensory information compared with the other 2 groups. These findings reveal a sport skill–specific bias in the reweighing of sensory inputs for spatial orientation and postural control.  相似文献   

6.
During stance, head extension increases postural sway, possibly due to interference with sensory feedback. The sit-to-stand movement is potentially destabilizing due to the development of momentum as the trunk flexes forward and the body transitions to a smaller base of support. It is unclear what role head orientation plays in the postural and movement characteristics of the sit-to-stand transition. The authors assessed how moving from sitting to standing with head-on-trunk extension compared with moving with the head neutral or flexed, or with moving with the head facing forward in space (which would involve head-on-trunk extension, but not head-in-space extension) in healthy, young participants. Head-on-trunk extension increased center of pressure variability, but decreased movement velocities, movement duration, and trunk flexion compared with flexed and neutral head-on-trunk orientations. Similarities in movement characteristics between head-on-trunk extension and the forward head-in-space orientation suggest that stabilizing the head in space does not fully counteract the postural and movement changes due to head-on-trunk extension. Findings suggest that proprioceptive feedback from the neck muscles contributes to the regulation of posture and movement, and therefore should not be overlooked in research on the role of sensory feedback in postural control.  相似文献   

7.
During stance, head extension increases postural sway, possibly due to interference with sensory feedback. The sit-to-stand movement is potentially destabilizing due to the development of momentum as the trunk flexes forward and the body transitions to a smaller base of support. It is unclear what role head orientation plays in the postural and movement characteristics of the sit-to-stand transition. The authors assessed how moving from sitting to standing with head-on-trunk extension compared with moving with the head neutral or flexed, or with moving with the head facing forward in space (which would involve head-on-trunk extension, but not head-in-space extension) in healthy, young participants. Head-on-trunk extension increased center of pressure variability, but decreased movement velocities, movement duration, and trunk flexion compared with flexed and neutral head-on-trunk orientations. Similarities in movement characteristics between head-on-trunk extension and the forward head-in-space orientation suggest that stabilizing the head in space does not fully counteract the postural and movement changes due to head-on-trunk extension. Findings suggest that proprioceptive feedback from the neck muscles contributes to the regulation of posture and movement, and therefore should not be overlooked in research on the role of sensory feedback in postural control.  相似文献   

8.
The authors examined how individuals adapt their gait and regulate their body configuration before altering direction during walking. Eight young adults were asked to change direction during walking with different turning angles (0deg;, 45deg;, 90deg;), pivot foot (left, right), and walking speeds (normal and fast). The authors used video and force platform systems to determine participants' whole-body center of mass and the center of pressure during the step before they changed direction. The results showed that anticipatory postural adjustments occurred during the prior step and occurred earlier for the fast walking speed. Anticipatory postural adjustments were affected by all 3 variables (turn angle, pivot foot, and speed). Participants leaned backward and sideward on the prior step in anticipation of the turn. Those findings indicate that the motor system uses central control mechanisms to predict the required anticipatory adjustments and organizes the body configuration on the basis of the movement goal.  相似文献   

9.
The authors examined how individuals adapt their gait and regulate their body configuration before altering direction during walking. Eight young adults were asked to change direction during walking with different turning angles (0 degree, 45 degree, 90 degree), pivot foot (left, right), and walking speeds (normal and fast). The authors used video and force platform systems to determine participants' whole-body center of mass and the center of pressure during the step before they changed direction. The results showed that anticipatory postural adjustments occurred during the prior step and occurred earlier for the fast walking speed. Anticipatory postural adjustments were affected by all 3 variables (turn angle, pivot foot, and speed). Participants leaned backward and sideward on the prior step in anticipation of the turn. Those findings indicate that the motor system uses central control mechanisms to predict the required anticipatory adjustments and organizes the body configuration on the basis of the movement goal.  相似文献   

10.
Studies have suggested that proper postural control is essential for the development of reaching. However, little research has examined the development of the coordination between posture and manual control throughout childhood. We investigated the coordination between posture and manual control in children (7- and 10-year-olds) and adults during a precision fitting task as task constraints became more difficult. Participants fit a block through an opening as arm kinematics, trunk kinematics, and center of pressure data were collected. During the fitting task, the precision, postural, and visual constraints of the task were manipulated. Young children adopted a strategy where they first move their trunk toward the opening and then stabilize their trunk (freeze degrees of freedom) as the precision manual task is being performed. In contrast, adults and older children make compensatory trunk movements as the task is being performed. The 10-year-olds were similar to adults under the less constrained task conditions, but they resembled the 7-year-olds under the more challenging tasks. The ability to either suppress or allow postural fluctuations based on the constraints of a suprapostural task begins to develop at around 10 years of age. This ability, once developed, allows children to learn specific segmental movements required to complete a task within an environmental context.  相似文献   

11.
The authors studied the adjustment of the 2 distinct known expressions of gait velocity, the velocity of the center of gravity (CG) and the velocity of the center of foot pressure (CP) at the end of the 1st step in 2 experimental situations: natural gait initiation (the control situation, CS) and heel-off gait initiation (the test situation, TS). Gait was initiated by 7 healthy participants, from an erect spontaneous posture in the CS and from a posture with heels raised in the TS, on a force platform at 3 self-selected speed conditions. Biomechanical data from the force platform were collected in both experimental situations, and the authors used a particular gait analysis based on the differential method of Y. Brenière (2003) in order to approach velocity modulation by means of step length and frequency. Results showed that CG and CP velocities were adjusted differently during heel-off gait initiation than during natural gait initiation. CP velocity, as compared with CG velocity, was overestimated in TS. Results also established the relevance of the expression of step velocity by means of step length and frequency: The central nervous system, taking into account the specific postural constraints of each experimental situation, uses a reference value and a regulating parameter to modulate step velocity. Moreover, the contributions of 1st step length and frequency to the expression of step velocity in TS and CS were different. Thus, a specific locomotor behavior corresponds to a given experimental situation that is characterized by its own initial biomechanical constraints.  相似文献   

12.
The purpose of this study was to investigate changes in postural sway and strategy elicited by lumbar extensor muscle fatigue. Specifically, changes in center of mass (COM), center of pressure (COP), and joint kinematics during quiet standing were determined, as well as selected cross correlations between these variables that are indicative of movement strategy. Twelve healthy male participants stood quietly both before and after exercises that fatigued the lumbar extensors. Whole-body movement and ground reaction force data were recorded and used to calculate mean body posture and variability of COM, COP, and joint kinematics during quiet standing. Three main findings emerged. First, participants adopted a slight forward lean post-fatigue as evidenced by an anterior shift of the COM and COP. Second, post-fatigue increases in joint angle variability were observed at multiple joints including joints distal to the fatigued musculature. Despite these increases, anterior-posterior (AP) ankle angle correlated well with AP COM position, suggesting the body still behaved similar to an inverted pendulum. Third, global measures of sway based on COM and COP were not necessarily indicative of changes in individual joint kinematics. Thus, in trying to advance our understanding of how localized fatigue affects movement patterns and the postural control system, it appears that joint kinematics and/or multivariate measures of postural sway are necessary.  相似文献   

13.
The authors studied the adjustment of the 2 distinct known expressions of gait velocity, the velocity of the center of gravity (CG) and the velocity of the center of foot pressure (CP) at the end of the 1st step in 2 experimental situations: natural gait initiation (the control situation, CS) and heel-off gait initiation (the test situation, TS). Gait was initiated by 7 healthy participants, from an erect spontaneous posture in the CS and from a posture with heels raised in the TS, on a force platform at 3 self-selected speed conditions. Biomechanical data from the force platform were collected in both experimental situations, and the authors used a particular gait analysis based on the differential method of Y. Brenière (2003) in order to approach velocity modulation by means of step length and frequency. Results showed that CG and CP velocities were adjusted differently during heel-off gait initiation than during natural gait initiation. CP velocity, as compared with CG velocity, was overestimated in TS. Results also established the relevance of the expression of step velocity by means of step length and frequency: The central nervous system, taking into account the specific postural constraints of each experimental situation, uses a reference value and a regulating parameter to modulate step velocity. Moreover, the contributions of 1st step length and frequency to the expression of step velocity in TS and CS were different. Thus, a specific locomotor behavior corresponds to a given experimental situation that is characterized by its own initial biomechanical constraints.  相似文献   

14.
There are contrasting views on the role of vision in modifying postural organization (information-driven and postural facilitation) and limited direct tests of the underlying postural mechanisms. Here, we examined whether the distinction between the two views is appropriate given that both are interrelated parts of task constraints modulating postural coordination and control. The study investigated whether changes in the organization of the postural system are a function of the visual precision demands of a task and, in addition, whether such organization could be described as reflecting an intermittent controller. Sixteen participants were instructed to maintain quiet postural stance while fixating a point at different viewing distances (25, 50, 135, 220, 305 cm) or standing with eyes closed. The 25-cm condition showed the lowest standard deviation of the center of pressure (COP) and the highest correlation dimension (CD) in the anterior posterior direction. Analyses revealed that, contrary to the intermittent controller hypothesis, adaptations in the continuous COP and center of mass (COM) coupling characterized the observed changes in CD. The findings show that the natural act of looking to the same feature in the environment as a function of visual viewing distance can lead to quantitative and qualitative changes in the dynamics of posture. This is consistent with the view that postural facilitation and information availability are integrated in the perceptual-motor dynamics.  相似文献   

15.
The authors addressed the interactions between control of bimanual multijoint coordination tasks and posture. Participants (N = 6) performed 8 coordination patterns that differed in degree of complexity by using their bilateral elbows and wrists under 3 scaled motion speeds while standing on 2 force plates. Results indicated that producing complex bimanual multijoint coordinative tasks affected postural sway, thus resulting in an increase of sway activity. Behavioral as well as mechanical factors accounted for the increased disturbance in postural sway. Those findings suggest that performing complex coordination tasks disrupts postural control in normal young adults.  相似文献   

16.
The authors sought to investigate if short-term gaze stability exercises have an effect on postural stability of dynamic standing during neck movement in patients with posterior circulation stroke (PCS). Patients in both PCS and non-PCS groups were assigned to either an intervention or control group. The intervention group performed the gaze stability exercises for 10 min while the control group was merely resting. The center of pressure velocity was calculated to evaluate the postural stability. After intervention, PCS and non-PCS showed a significant reduction in center of pressure velocity during dynamic standing with eyes closed condition, and the PCS group showed a significant improvement in eye-opened condition. This study indicated that gaze stability exercises improve PCS patients' postural control, especially during dynamic standing.  相似文献   

17.
The tendency to overestimate has consistently been reported in studies of reachability estimation. According to one of the more prominent explanations, the postural stability hypothesis, the perceived reaching limit depends on the individual's perceived postural constraints. To test that proposition, the authors compared estimates of reachability of 38 adults (a) in the seated posture (P1) and (b) in the more demanding posture of standing on one foot and leaning forward (P2). Although there was no difference between conditions for total error, results for the distribution and direction of error indicated that participants overestimated in the P1 condition and underestimated in the P2 condition. It therefore appears that perceived postural constraints could be a factor in judgments of reachability. When participants in the present study perceived greater postural demands, they may have elected to program a more conservative strategy that resulted in underestimation.  相似文献   

18.
Effects of postural state and hand preference as constraints on 1-handed catching performance were investigated in different ability groups of children aged 9-10 years. On the basis of pretest data, the authors classified 48 participants into groups of good, intermediate, and poor catchers (n = 16 in each) and asked them to perform 1-handed catches with their preferred and nonpreferred hands while standing and sitting. The good catchers' performance was not affected by the imposed postural constraints but did improve when they used the preferred hand. A similar effect of hand preference was evident in the intermediate and poor catchers, but there was also an effect of postural constraint. Independent of hand preference, intermediate catchers' performance while seated improved significantly compared with that during standing. For poor catchers, there was an interaction between hand preference and posture; significant improvement was evident only when they used the preferred hand in the sitting condition. The finding that manipulation of posture and hand preference affected performance outcomes indicates that perceptual skill is not the only influence on catching performance in children. Manipulation of those key constraints may facilitate the acquisition of catching skill, but more research is needed to determine the permanence of those effects.  相似文献   

19.
The authors examined the interaction between the development of postural control and the development of the executive function of attention in 13 children and 6 adults in dual-task conditions. Participants performed an attentionally demanding cognitive task and a postural task simultaneously. The authors equalized the attentional load of the cognitive task across age groups. Comparative changes in the center of pressure in dual- and single-task conditions indicated that dual tasks interfered with postural performance in the wide stance (WS) and the modified Romberg stance (RS). Children at 4-6 years of age (but not children at ages 7-12 years of age or adults) experienced postural control interference in both stance positions, but interference was greater in the RS (p = .018). For all participants, cognitive task performance in RS was unchanged from that in WS. The knowledge gained from the results of this study will contribute to the design and implementation of academic and preacademic programming for young children. Their performance of an intentionally demanding cognitive task would be enhanced by the provision of appropriately sized desks and chairs or their use of an alternate, less demanding position.  相似文献   

20.
Impairment of postural control is a common consequence of Parkinson’s disease (PD). Increasing evidences demonstrate that the pathophysiology of postural disorders in PD includes deficits in proprioceptive processing and integration. However, the nature of these deficits has not been thoroughly examined. We propose to establish a link between proprioceptive impairments and postural deficits in PD using two different experimental approaches manipulating proprioceptive information. In the first one, the subjects stood on a platform that tilted slowly with oscillatory angular movements in the frontal or sagittal planes. The amplitude and frequency of these movements were kept below the semicircular canal perception threshold. Subjects were asked to maintain vertical body posture with and without vision. The orientations of body segments were analyzed. In the second one, the postural control was tested using the tendon-vibration method, which is known to generate illusory movement sensations and postural reactions. Vibrations were applied to ankle muscles. The subject’s whole-body motor responses were analyzed from center of pressure displacements.In the first experiment, the parkinsonian patients (PP) were unable to maintain the vertical trunk orientation without vision. Their performances with vision improved, without fully reaching the level of control subjects (CS). In the second experiment, the postural reactions of the PP were similar to those of the CS at the beginning of the perturbation and increased drastically at the end of the perturbation’s period as compared to those of CS and could induce fall.These results will bring new concepts to the sensorimotor postural control, to the physiopathology of posture, equilibrium and falls in PD and to the role of basal ganglia pathways in proprioception integration. Nevertheless, in order to assess precisely the role played by sensorimotor integration deficits in postural impairments in PD, further studies establishing the links between clinical features and abnormalities are now required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号