首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A complex brain network, centered on the hippocampus, supports episodic memories throughout their lifetimes. Classically, upon memory encoding during active behavior, hippocampal activity is dominated by theta oscillations (6-10Hz). During inactivity, hippocampal neurons burst synchronously, constituting sharp waves, which can propagate to other structures, theoretically supporting memory consolidation. This 'two-stage' model has been updated by new data from high-density electrophysiological recordings in animals that shed light on how information is encoded and exchanged between hippocampus, neocortex and subcortical structures such as the striatum. Cell assemblies (tightly related groups of cells) discharge together and synchronize across brain structures orchestrated by theta, sharp waves and slow oscillations, to encode information. This evolving dynamical schema is key to extending our understanding of memory processes.  相似文献   

2.
One traditional and long-held view of medial temporal lobe (MTL) function is that it contains a system of structures that are exclusively involved in memory, and that the extent of memory loss following MTL damage is simply related to the amount of MTL damage sustained. Indeed, human patients with extensive MTL damage are typically profoundly amnesic whereas patients with less extensive brain lesions centred upon the hippocampus typically exhibit only moderately severe anterograde amnesia. Accordingly, the latter observations have elevated the hippocampus to a particularly prominent position within the purported MTL memory system. This article reviews recent lesion studies in macaque monkeys in which the behavioural effects of more highly circumscribed lesions (than those observed to occur in human patients with MTL lesions) to different subregions of the MTL have been examined. These studies have reported new find-ings that contradict this concept of a MTL memory system. First, the MTL is not exclusively involved in mnemonic processes; some MTL structures, most notably the perirhinal cortex, also contribute to perception. Second, there are some forms of memory, including recognition memory, that are not always affected by selective hippocampal lesions. Third, the data support the idea that regional functional specializations exist within the MTL. For example, the macaque perirhinal cortex appears to be specialized for processing object identity whereas the hippocampus may be specialized for processing spatial and temporal relationships.  相似文献   

3.
One traditional and long-held view of medial temporal lobe (MTL) function is that it contains a system of structures that are exclusively involved in memory, and that the extent of memory loss following MTL damage is simply related to the amount of MTL damage sustained. Indeed, human patients with extensive MTL damage are typically profoundly amnesic whereas patients with less extensive brain lesions centred upon the hippocampus typically exhibit only moderately severe anterograde amnesia. Accordingly, the latter observations have elevated the hippocampus to a particularly prominent position within the purported MTL memory system. This article reviews recent lesion studies in macaque monkeys in which the behavioural effects of more highly circumscribed lesions (than those observed to occur in human patients with MTL lesions) to different subregions of the MTL have been examined. These studies have reported new findings that contradict this concept of a MTL memory system. First, the MTL is not exclusively involved in mnemonic processes; some MTL structures, most notably the perirhinal cortex, also contribute to perception. Second, there are some forms of memory, including recognition memory, that are not always affected by selective hippocampal lesions. Third, the data support the idea that regional functional specializations exist within the MTL. For example, the macaque perirhinal cortex appears to be specialized for processing object identity whereas the hippocampus may be specialized for processing spatial and temporal relationships.  相似文献   

4.
Debate continues on whether the role of rodent hippocampus in memory is limited to the spatial domain. Recently, this controversy has been addressed with studies on the social transmission of food preference, an odor-odor association task with no spatial requirements. Multiple reports have concluded that damage to the hippocampal region impairs memory in this task, but there remain questions about the extent of damage essential to produce an impairment. Furthermore, a recent study () found no effect of hippocampal lesions on memory in this task. We tested animals with complete lesions of the hippocampus (H) lesions of the hippocampus plus subiculum (HS), and lesions of the adjacent, anatomically related cortices of the parahippocampal region (PHR). H lesions produced an impairment on spatial delayed alternation, but not on memory for the social transmission of food preference, whereas HS and PHR lesions produced severe and equivalent impairments on memory for the socially acquired food preference. We discuss possible explanations for the discrepancy with the results of and conclude that the hippocampus and subiculum together play a critical role in the formation of this form of nonspatial, relational memory.  相似文献   

5.
We explored the circumstances in which rats engage either declarative memory (and the hippocampus) or habit memory (and the dorsal striatum). Rats with damage to the hippocampus or dorsal striatum were given three different two-choice discrimination tasks (odor, object, and pattern). These tasks differed in the number of trials required for learning (~10, 60, and 220 trials). Dorsal striatum lesions impaired discrimination performance to a greater extent than hippocampal lesions. Strikingly, performance on the task learned most rapidly (the odor discrimination) was severely impaired by dorsal striatum lesions and entirely spared by hippocampal lesions. These findings suggest that discrimination learning in the rat is primarily supported by the dorsal striatum (and habit memory) and that rats engage a habit-based memory system even for a task that takes only a few trials to acquire. Considered together with related studies of humans and nonhuman primates, the findings suggest that different species will approach the same task in different ways.  相似文献   

6.
7.
The discovery of multiple memory systems supported by discrete brain regions has been one of the most important advances in behavioral neuroscience. A wealth of studies have investigated the role of the hippocampus and related structures in supporting various types of memory classifications. While the exact classification that best describes hippocampal function is often debated, a specific subset of cognitive function that is focused on the use of spatial information to form hippocampal cognitive maps has received extensive investigation. These studies frequently employ a variety of experimental manipulations including brain lesions, temporary neural blockade due to cooling or discrete injections of specific drugs. While these studies have provided important insights into the function of the hippocampus, they are limited due to the invasive nature of the manipulation. Ethanol is a drug that is easily administered in a non-invasive fashion, is rapidly absorbed and produces effects only in specific brain regions. The hippocampus is one brain region affected by acute ethanol administration. The following review summarizes research from the last 20 years investigating the effects of acute ethanol administration on one specific type of hippocampal cognitive function, namely spatial memory. It is proposed that among its many effects, one specific action of acute ethanol administration is to produce similar cognitive and neurophysiological effects as lesions of the hippocampus. Based on these similarities and the ease of its use, it is concluded that acute ethanol administration is a valuable tool in studying hippocampal function and multiple memory systems.  相似文献   

8.
Early studies of memory-impaired patients with medial temporal lobe (MTL) damage led to the view that the hippocampus and related MTL structures are involved in the formation of long-term memory and that immediate memory and working memory are independent of these structures. This traditional idea has recently been revisited. Impaired performance in patients with MTL lesions on tasks with short retention intervals, or no retention interval, and neuroimaging findings with similar tasks have been interpreted to mean that the MTL is sometimes needed for working memory and possibly even for visual perception itself. We present a reappraisal of this interpretation. Our main conclusion is that, if the material to be learned exceeds working memory capacity, if the material is difficult to rehearse, or if attention is diverted, performance depends on long-term memory even when the retention interval is brief. This fundamental notion is better captured by the terms subspan memory and supraspan memory than by the terms short-term memory and long-term memory. We propose methods for determining when performance on short-delay tasks must depend on long-term (supraspan) memory and suggest that MTL lesions impair performance only when immediate memory and working memory are insufficient to support performance. In neuroimaging studies, MTL activity during encoding is influenced by the memory load and correlates positively with long-term retention of the material that was presented. The most parsimonious and consistent interpretation of all the data is that subspan memoranda are supported by immediate memory and working memory and are independent of the MTL.  相似文献   

9.
The need for low cost, noninvasive procedures for aiding in the diagnosis and understanding of Alzheimer's Disease (AD) has led to theories and procedures examining the role of olfactory disorders because of the finding that the brains of AD patients invariably exhibit neuropathology hi the hippocampus and entorhinal cortex. This loss correlates with the increase in the number of plaques and tangles and with the severity of dementia. Considered together, these findings suggest that brain structures closely related to the olfactory system demonstrate significant histopathology in AD. A comprehensive review of the literature pertaining to olfaction in persons with AD revealed that the olfactory identification ability of patients with memory disorders is impaired relative to controls. Consistency is lacking, however, when olfactory detection thresholds are investigated. Also, there is inconsistency in regards to severity of illness and olfactory function. In addition to differentiating AD patients from normals, the olfactory paradigm has shown some limited usefulness in differentiating AD patients from some other demented patients.  相似文献   

10.
Several lines of evidence indicate that gamma-aminobutyric acid (GABA) type A (GABA(A)) receptors regulate memory consolidation. Here we studied the effect on consolidation of the selective antagonist of GABA(A) receptors, bicuculline, given into several regions of the cortex at different times after one-trial step-down inhibitory avoidance (0.5 mA, 2-s footshock). Rats were bilaterally implanted with cannulae aimed at the CA1 region of the dorsal hippocampus, entorhinal cortex or posterior parietal cortex, three areas known to be involved in the memory consolidation of this task. At different times after training, bicuculline (0.5 microg/side) was infused into the above mentioned structures. Bicuculline increased memory retention when administered either immediately or 1.5h after training into CA1, and both immediately and 3h after training in the entorhinal or parietal cortex. Thus, in agreement with previous findings using other drugs, the response was biphasic in these latter structures. This suggests that GABAergic mechanisms normally downregulate, memory processing by inhibiting on-going activities necessary for consolidation at the times in which bicuculline was effective in each structure. Based on previous findings, in the hippocampus, such activity involves a number of receptors and signaling pathways in the first 1.5h after training. In the entorhinal and parietal cortex memory-related activities include the participation of protein kinase A and extracellularly regulated kinase (ERK) twice, right after training and then again 3h later.  相似文献   

11.
In patients with amnestic mild cognitive impairment (aMCI) and Alzheimer's disease (AD), previous studies have reported the decrease of N-acetylaspartate (NAA) concentration and the increase of myo-inositol (MI) concentration using proton magnetic resonance spectroscopy (1H-MRS). However, it remains to be investigated what aspects of cognition these metabolite changes reflect. In this study we evaluated the correlations between the subtests of Wechsler Memory Scale-Revised (WMS-R) and the concentrations of NAA and MI. The study group was composed of 42 patients with aMCI and 67 patients with AD. 1H-MR spectra with a single voxel-point resolved spectroscopy (PRESS) at a short echo time were acquired from the bilateral hippocampi and posterior cingulate gyrus. Positive correlations were shown between the NAA concentration in the left hippocampus and verbal memory, visual memory, general memory, attention and delayed recall; and furthermore, between the NAA concentration in the right hippocampus and verbal memory and general memory. Negative correlations were shown between the MI concentration in the left hippocampus and verbal memory, general memory, and delayed recall, and between the MI concentration in the right hippocampus and verbal memory. There was no significant correlation between any subtest of WMS-R and these two metabolite concentrations in the posterior cingulate gyrus. These findings suggest that bilateral, especially left hippocampal NAA and MI concentrations are associated with memory dysfunction observed in patients with aMCI and AD. In contrast, NAA and MI concentrations in the posterior cingulate gyrus may be less related to memory function than those in the hippocampus.  相似文献   

12.
A rigorous new methodology was applied to the study of structure function relationships in the living human brain. Face recognition memory (FRM) and other cognitive measures were made in 29 healthy young male subjects (mean age = 21.7 years) and related to volumetric measurements of their cerebral hemispheres and of structures in their medial temporal lobes, obtained using the Cavalieri method in combination with high resolution Magnetic Resonance Imaging (MRI. Greatest proportional variability in volumes was found for the lateral ventricles (57%) for the cerebral hemispheres (8%) in the mean volumes of the hippocampus, parahippocampal gyrus, amygdala, caudate nucleus, temporal pole and temporal lobe on the right and left sides of the brain. The volumes of the right and left parahippocampal gyrus, temporal pole, temporal lobe, and left hippocampus were, prior to application of the Bonferroni correction to take account of 12 multiple comparisons, significantly correlated with the volume of the corresponding hemisphere(p < 0.05). The volumes of all structures were highly correlated (p < 0.0002 for all comparisons) between the two cerebral hemispheres. There were no positive relationships between structure volumes and FRM score. However, the volume of the right amygdala was, prior to application of the Bonferroni correction to take account of 38~multiple comparisons, found to be significantly smaller in the five most consistent high scorers compared to the five most consistent low scorers (t = 2.77,p = 0.025). The implications for possible relationships between healthy medial temporal lobe structures and memory are discussed.  相似文献   

13.
The hippocampus, space, and viewpoints in episodic memory   总被引:2,自引:0,他引:2  
A computational model of how single neurons in and around the rat hippocampus support spatial navigation is reviewed. The extension of this model, to include the retrieval from human long-term memory of spatial scenes and the spatial context of events is discussed. The model explores the link between spatial and mnemonic functions by supposing that retrieval of spatial information from long-term storage requires the imposition of a particular viewpoint. It is consistent with data relating to representational hemispatial neglect and the involvement of the mammillary bodies, anterior thalamus, and hippocampal formation in supporting both episodic recall and the representation of head direction. Some recent behavioural, neuropsychological, and functional neuroimaging experiments are reviewed, in which virtual reality is used to allow controlled study of navigation and memory for events set within a rich large-scale spatial context. These studies provide convergent evidence that the human hippocampus is involved in both tasks, with some lateralization of function (navigation on the right and episodic memory on the left). A further experiment indicates hippocampal involvement in retrieval of spatial information from a shifted viewpoint. I speculate that the hippocampal role in episodic recollection relates to its ability to represent a viewpoint moving within a spatial framework.  相似文献   

14.
We studied the capacity of post-training intracranial self-stimulation (SS) to reverse or ameliorate learning and memory impairments caused by amygdala damage in rats. A first experiment showed that lesions of the basolateral amygdala (BLA) slow down acquisition of two-way active avoidance conditioning (2wAA). In a second experiment we observed that a post-training SS treatment administered immediately after each 2wAA conditioning session is able to completely reverse the disruptive effects of the BLA lesions, and the facilitative effect lasts for 10 days. A third experiment allowed us to differentiate the strong recuperative effects of the SS treatment from the slight effect caused by overtraining the same conditioning response. We concluded that SS is able to counteract the behavioral deficit induced by BLA damage, probably by activating alternative undamaged brain structures related to learning and memory, such as the hippocampus.  相似文献   

15.
In this article, we present a perspective on the role of the hippocampal system in generalization, instantiated in a computational model called REMERGE (recurrency and episodic memory results in generalization). We expose a fundamental, but neglected, tension between prevailing computational theories that emphasize the function of the hippocampus in pattern separation (Marr, 1971; McClelland, McNaughton, & O'Reilly, 1995), and empirical support for its role in generalization and flexible relational memory (Cohen & Eichenbaum, 1993; Eichenbaum, 1999). Our account provides a means by which to resolve this conflict, by demonstrating that the basic representational scheme envisioned by complementary learning systems theory (McClelland et al., 1995), which relies upon orthogonalized codes in the hippocampus, is compatible with efficient generalization-as long as there is recurrence rather than unidirectional flow within the hippocampal circuit or, more widely, between the hippocampus and neocortex. We propose that recurrent similarity computation, a process that facilitates the discovery of higher-order relationships between a set of related experiences, expands the scope of classical exemplar-based models of memory (e.g., Nosofsky, 1984) and allows the hippocampus to support generalization through interactions that unfold within a dynamically created memory space.  相似文献   

16.
Investigation of the anatomical substructure of the medial temporal lobe has revealed a number of highly interconnected areas, which has led some to propose that the region operates as a unitary memory system. However, here we outline the results of a number of studies from our laboratories, which investigate the contributions of the rat's perirhinal cortex and postrhinal cortex to memory, concentrating particularly on their respective roles in memory for objects. By contrasting patterns of impairment and spared abilities on a number of related tasks, we suggest that perirhinal cortex and postrhinal cortex make distinctive contributions to learning and memory: for example, that postrhinal cortex is important in learning about within-scene position and context. We also provide evidence that despite the strong connectivity between these cortical regions and the hippocampus, the hippocampus, as evidenced by lesions of the fornix, has a distinct function of its own—combining information about objects, positions, and contexts.  相似文献   

17.
Both the medial prefrontal cortex (mPFC) and hippocampus are implicated in working memory tasks in rodents. Specifically, it has been hypothesized that the mPFC is primarily engaged in the temporary storage and processing of information lasting from a subsecond to several seconds, while the hippocampal function becomes more critical as the working memory demand extends into longer temporal scales. Although these structures may be engaged in a temporally separable manner, the extent of their contributions in the "informational content" of working memory remains unclear. To investigate this issue, the mPFC and dorsal hippocampus (dHPC) were temporarily inactivated via targeted infusions of the GABA(A) receptor agonist muscimol in rats prior to their performance on a delayed alternation task (DAT), employing an automated figure-eight maze that required the animals to make alternating arm choice responses after 3-, 30-, and 60-sec delays for water reward. We report that inactivation of either the mPFC or dHPC significantly reduced DAT at all delay intervals tested. However, there were key qualitative differences in the behavioral effects. Specifically, mPFC inactivation selectively impaired working memory (i.e., arm choice accuracy) without altering reference memory (i.e., the maze task rule) and arm choice response latencies. In contrast, dHPC inactivation increased both reference memory errors and arm choice response latencies. Moreover, dHPC, but not mPFC, inactivation increased the incidence of successive working memory errors. These results suggest that while both the mPFC and hippocampus are necessarily involved in DAT, they seem to process different informational components associated with the memory task.  相似文献   

18.
Notwithstanding several neurotransmission systems are frequently related to memory formation, amnesia and/or therapeutic targets for memory alterations, the role of transporters γ-aminobutyric acid (GABA, GAT1), glutamate (neuronal glutamate transporter excitatory amino acid carrier; EACC1), dopamine (DAT) and serotonin (SERT) is poorly understood. Hence, in this paper Western-blot analysis was used to evaluate expression changes on them during memory formation in trained and untrained rats treated with the selective serotonin transporter inhibitor fluoxetine, the amnesic drug d-methamphetamine (METH) and fluoxetine plus METH. Transporters expression was evaluated in the hippocampus, prefrontal cortex and striatum. Data indicated that in addition of memory performance other behavioral parameters (e.g., explorative behavior, food-intake, etc.) that memory formation was recorded. Thus, memory formation in a Pavlovian/instrumental autoshaping was associated to up-regulation of prefrontal cortex GAT1 and EAAC1, striatal SERT, DAT and EACC1; while, hippocampal EACC1, GAT1 and SERT were down-regulated. METH impaired short (STM) and long-term memory (LTM), at 24 or 48h. The METH-induced amnesia down-regulated SERT, DAT, EACC1 and GAT1 in hippocampus and the GAT1 in striatum; no-changes were observed in prefrontal cortex. Post-training administration of fluoxetine improved LTM (48h), which was associated to DAT, GAT1 (prefrontal cortex) up-regulation, but GAT1 (striatum) and SERT (hippocampus) down-regulation. Fluoxetine plus METH administration was able to prevent amnesia, which was associated to DAT, EACC1 and GAT1 (prefrontal cortex), SERT and DAT (hippocampus) and EACC1 or DAT (striatal) up-regulation. Together these data show that memory formation, amnesia and anti-amnesic effects are associated to specific patters of transporters expression.  相似文献   

19.
Investigation of the anatomical substructure of the medial temporal lobe has revealed a number of highly interconnected areas, which has led some to propose that the region operates as a unitary memory system. However, here we outline the results of a number of studies from our laboratories, which investigate the contributions of the rat's perirhinal cortex and postrhinal cortex to memory, concentrating particularly on their respective roles in memory for objects. By contrasting patterns of impairment and spared abilities on a number of related tasks, we suggest that perirhinal cortex and postrhinal cortex make distinctive contributions to learning and memory: for example, that postrhinal cortex is important in learning about within-scene position and context. We also provide evidence that despite the strong connectivity between these cortical regions and the hippocampus, the hippocampus, as evidenced by lesions of the fornix, has a distinct function of its own--combining information about objects, positions, and contexts.  相似文献   

20.
We present a framework for understanding how the hippocampus, neocortex, and basal ganglia work together to support cognitive and behavioral function in the mammalian brain. This framework is based on computational tradeoffs that arise in neural network models, where achieving one type of learning function requires very different parameters from those necessary to achieve another form of learning. For example, we dissociate the hippocampus from cortex with respect to general levels of activity, learning rate, and level of overlap between activation patterns. Similarly, the frontal cortex and associated basal ganglia system have important neural specializations not required of the posterior cortex system. Taken together, this overall cognitive architecture, which has been implemented in functioning computational models, provides a rich and often subtle means of explaining a wide range of behavioral and cognitive neuroscience data. Here, we summarize recent results in the domains of recognition memory, contextual fear conditioning, effects of basal ganglia lesions on stimulus-response and place learning, and flexible responding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号