首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The classical conditioning task of blocking involves the adding of a novel but redundant stimulus to a previously trained stimulus. Both blocking and novelty detection are thought to involve the hippocampus. Previously, Solomon (1977) found that nonselective aspiration lesions of the hippocampal region eliminated blocking in rabbit eyeblink conditioning. We tested the effects of selective ibotenic acid lesions of the hippocampus on blocking, as well as on novelty detection, when training is switched from a tone conditioned stimulus (CS) to a compound tone-light CS in eyeblink conditioning. Selective hippocampal lesions did not eliminate blocking but did lead to a facilitation of conditioned response (CR) acquisition to the tone and to the light, but not to the tone-light compound. Selective hippocampal lesions disrupted a CR decrement observed in sham surgical controls when transferred from tone training to tone-light training. It appears that although selective hippocampal lesions do not eliminate blocking in eyeblink conditioning, they do disrupt novelty detection and may facilitate learning to a previously blocked cue.  相似文献   

2.
Imaging, electrophysiological studies, and lesion work have shown that the medial temporal lobe (MTL) is important for episodic memory; however, it is unclear whether different MTL regions support the spatial, temporal, and item elements of episodic memory. In this study we used fMRI to examine retrieval performance emphasizing different aspects of episodic memory in the context of a spatial navigation paradigm. Subjects played a taxi-driver game ("yellowcab"), in which they freely searched for passengers and delivered them to specific landmark stores. Subjects then underwent fMRI scanning as they retrieved landmarks, spatial, and temporal associations from their navigational experience in three separate runs. Consistent with previous findings on item memory, perirhinal cortex activated most strongly during landmark retrieval compared with spatial or temporal source information retrieval. Both hippocampus and parahippocampal cortex activated significantly during retrieval of landmarks, spatial associations, and temporal order. We found, however, a significant dissociation between hippocampal and parahippocampal cortex activations, with spatial retrieval leading to greater parahippocampal activation compared with hippocampus and temporal order retrieval leading to greater hippocampal activation compared with parahippocampal cortex. Our results, coupled with previous findings, demonstrate that the hippocampus and parahippocampal cortex are preferentially recruited during temporal order and spatial association retrieval--key components of episodic "source" memory.  相似文献   

3.
Prior experiments, as well as computational models, have implicated the hippocampal region in mediating the influence of nonreinforced stimulus preexposure on subsequent learning. Learned irrelevance (LIRR) is a preexposure task in which uncorrelated preexposures to the conditioned stimulus (CS) and the unconditioned stimulus (US) produce a retardation of subsequent CS-US conditioning. In the work presented here, we report the results of tests of LIRR in eyeblink conditioning in rabbits with sham lesions, nonselective cortical-hippocampal region lesions, selective hippocampal lesions, and selective entorhinal lesions. Sham-lesioned rabbits that had been preexposed to the CS and the US exhibited slower acquisition of conditioned response, as compared with context-preexposed controls. Nonselective cotical-hippocampal region lesions disrupted LIRR, whereas selective hippocampal lesions had no detrimental effect on LIRR. Selective entorhinal lesions disrupted LIRR. These findings fit other recent empirical findings and theoretical predictions that some classical conditioning tasks previously thought to depend on the hippocampus depend, rather, on the entorhinal cortex.  相似文献   

4.
5.
Remembering the past and envisioning the future are at the core of one's sense of identity. Neuroimaging studies investigating the neural substrates underlying past and future episodic events have been growing in number. However, the experimental paradigms used to select and elicit episodic events vary greatly, leading to disparate results, especially with respect to the laterality and antero-posterior localization of hippocampal and adjacent medial temporal activations (i.e., parahippocampal, entorhinal and perirhinal cortices, amygdala). Although a central concern in today's literature, the issue of hippocampal and medial temporal lobe laterality and antero-posterior segregation in past and future episodic events has not yet been addressed extensively. Using the activation likelihood estimation (ALE) procedure (Turkeltaub, Eden, Jones, & Zeffiro, 2002), we performed a meta-analysis of hippocampal and adjacent medial temporal coordinates extracted from neuroimaging studies examining past remembering and future envisioning. We questioned whether methodological choices could influence the laterality of activations, namely (1) the type of cue used (generic vs. specific), (2) the type of task performed (recognition vs. recall/imagine), (3) the nature of the information retrieved (episodic vs. "strictly" episodic events) and (4) the age of participants. We consider "strictly" episodic events as events which are not only spatio-temporally unique and personal like episodic events, but are also associated with contextual and phenomenological details. These four factors were compared two-by-two, generating eight whole-brain statistical maps. Results indicate that (1) specific cues tend to activate more the right anterior hippocampus compared to the use of generic cues, (2) recall/imagine tasks tend to recruit more the left posterior parahippocampal gyrus compared to recognition tasks, (3) (re/pre)experiencing strictly episodic events tends to activate more the bilateral posterior hippocampus compared to episodic events and (4) older subjects tend to activate more the right anterior hippocampus compared to younger subjects. Importantly, our results stress that strictly episodic events triggered by specific cues elicit greater left posterior hippocampal activation than episodic events triggered by specific cues. These findings suggest that such basic methodological choices have an impact on the conclusions reached regarding past and future (re/pre)experiencing and their neural substrates.  相似文献   

6.
Empirical research has shown that the amygdala, hippocampus, and ventromedial prefrontal cortex (vmPFC) are involved in fear conditioning. However, the functional contribution of each brain area and the nature of their interactions are not clearly understood. Here, we extend existing neural network models of the functional roles of the hippocampus in classical conditioning to include interactions with the amygdala and prefrontal cortex. We apply the model to fear conditioning, in which animals learn physiological (e.g. heart rate) and behavioral (e.g. freezing) responses to stimuli that have been paired with a highly aversive event (e.g. electrical shock). The key feature of our model is that learning of these conditioned responses in the central nucleus of the amygdala is modulated by two separate processes, one from basolateral amygdala and signaling a positive prediction error, and one from the vmPFC, via the intercalated cells of the amygdala, and signaling a negative prediction error. In addition, we propose that hippocampal input to both vmPFC and basolateral amygdala is essential for contextual modulation of fear acquisition and extinction. The model is sufficient to account for a body of data from various animal fear conditioning paradigms, including acquisition, extinction, reacquisition, and context specificity effects. Consistent with studies on lesioned animals, our model shows that damage to the vmPFC impairs extinction, while damage to the hippocampus impairs extinction in a different context (e.g., a different conditioning chamber from that used in initial training in animal experiments). We also discuss model limitations and predictions, including the effects of number of training trials on fear conditioning.  相似文献   

7.
Classical conditioning has been explained by two main types of theories that postulate different learning mechanisms. Rescorla and Wagner (1972) put forth a theory in which conditioning is based on the ability of the US to drive learning through error correction. Alternatively, Mackintosh (1973) put forth a theory in which the ability of the CS to be associated with the unconditioned stimulus is modulated. We have proposed a reconciliation of these two mechanisms as working in parallel within different neural systems: a cerebellar system for US modulation and a hippocampal system for CS modulation. We developed a computational model of cerebellar function in eyeblink conditioning based on the error correction mechanism of the Rescorla-Wagner rule in which learningrelated activity from the cerebellum inhibits the inferior olive, which is the US input pathway to the cerebellum (Gluck et al., 1994). We developed a computational model of the hippocampal region that forms altered representations of conditioned stimuli based on their behavioral outcomes (Gluck & Myers, 1993; Myers et al., 1995). Overall, computational modeling and empirical findings support the idea that, at least in the case of eyeblink conditioning, there may be two different neural systems: the cerebellum which mediates US-based error correction and hippocampus which alters representations of CSs.  相似文献   

8.
The medial temporal lobe (MTL) plays a crucial role in supporting memory for events, but the functional organization of regions in the MTL remains controversial, especially regarding the extent to which different subregions support recognition based on familiarity or recollection. Here we review results from functional neuroimaging studies showing that, whereas activity in the hippocampus and posterior parahippocampal gyrus is disproportionately associated with recollection, activity in the anterior parahippocampal gyrus is disproportionately associated with familiarity. The results are consistent with the idea that the parahippocampal cortex (located in the posterior parahippocampal gyrus) supports recollection by encoding and retrieving contextual information, whereas the hippocampus supports recollection by associating item and context information. By contrast, perirhinal cortex (located in the anterior parahippocampal gyrus) supports familiarity by encoding and retrieving specific item information. We discuss the implications of a 'binding of item and context' (BIC) model for studies of recognition memory. This model argues that there is no simple mapping between MTL regions and recollection and familiarity, but rather that the involvement of MTL regions in these processes depends on the specific demands of the task and the type of information involved. We highlight several predictions for future imaging studies that follow from the BIC model.  相似文献   

9.
It is a consensus that familiarity and recollection contribute to episodic recognition memory. However, it remains controversial whether familiarity and recollection are qualitatively distinct processes supported by different brain regions, or whether they reflect different strengths of the same process and share the same support. In this review, I discuss how adapting standard human recognition memory paradigms to rats, performing circumscribed brain lesions and using receiver operating characteristic (ROC) methods contributed to solve this controversy. First, I describe the validation of the animal ROC paradigms and report evidence that familiarity and recollection are distinct processes in intact rats. Second, I report results from rats with hippocampal dysfunction which confirm this finding and lead to the conclusion that the hippocampus supports recollection but not familiarity. Finally, I describe a recent study focusing on the medial entorhinal cortex (MEC) that investigates the contribution of areas upstream of the hippocampus to recollection and familiarity.  相似文献   

10.
Neural substrates of latent inhibition: the switching model   总被引:8,自引:0,他引:8  
Latent inhibition (LI) refers to decrement in conditioning to a stimulus as a result of its prior nonreinforced preexposure. It is a robust phenomenon that has been demonstrated in a variety of classical and instrumental conditioning procedures and in many mammalian species, including humans. The development of LI is considered to reflect decreased associability of, or attention to, stimuli that predict no significant outcome. The fact that LI is considered to be a reflection of attentional processes has become of increasing importance to neuroscientists who see LI as a convenient tool for measuring the effects of drug treatments and lesions on attention. The present article surveys the data on brain systems, which have been studied in regard to their involvement in LI. These are reviewed and discussed separately in sections on noradrenergic, cholinergic, dopaminergic, serotonergic, and septo-hippocampal manipulations. On the basis of these data, it is concluded that the neural substrates of LI include the mesolimbic dopaminergic system, the mesolimbic serotonergic system, and the hippocampus. It is proposed that the preexposed stimulus loses its capacity to affect behavior in conditioning, even though it predicts reinforcement, because the hippocampus inhibits the switching mechanism of the nucleus accumbens via the subiculum-accumbens pathway. This action of the hippocampus is modulated by the mesolimbic serotonergic system via its interactions with the hippocampal or mesolimbic dopaminergic systems, or both.  相似文献   

11.
12.
Eyeblink classical conditioning is a useful paradigm for the study of the neurobiology of learning, memory, and aging, which also has application in the differential diagnosis of neurodegenerative diseases expressed in advancing age. Converging evidence from studies of eyeblink conditioning in neurological patients and brain imaging in normal adults document parallels in the neural substrates of this form of associative learning in humans and non-human mammals. Age differences in the short-delay procedure (400 ms CS-US interval) appear in middle age in humans and may be caused at least in part by cerebellar cortical changes such as loss of Purkinje cells. Whereas the hippocampus is not essential for conditioning in the delay procedure, disruption of hippocampal cholinergic neurotransmission impairs acquisition and slows the rate of learning. Alzheimer’s disease (AD) profoundly disrupts the hippocampal cholinergic system, and patients with AD consistently perform poorly in eyeblink conditioning. We hypothesize that disruption of hippocampal cholinergic pathways in AD in addition to age-associated Purkinje cell loss results in severely impaired eyeblink conditioning. The earliest pathology in AD occurs in entorhinal cortical input to hippocampus, and eyeblink conditioning may detect this early disruption before declarative learning and memory circuits become impaired. A case study is presented in which eyeblink conditioning detected impending dementia six years before changes on other screening tests indicated impairment. Because eyeblink conditioning is simple, non-threatening, and non-invasive, it may become a useful addition to test batteries designed to differentiate normal aging from mild cognitive impairment that progresses to AD and AD from other types of dementia.  相似文献   

13.
Eyeblink classical conditioning is a useful paradigm for the study of the neurobiology of learning, memory, and aging, which also has application in the differential diagnosis of neurodegenerative diseases expressed in advancing age. Converging evidence from studies of eyeblink conditioning in neurological patients and brain imaging in normal adults document parallels in the neural substrates of this form of associative learning in humans and non-human mammals. Age differences in the short-delay procedure (400 ms CS-US interval) appear in middle age in humans and may be caused at least in part by cerebellar cortical changes such as loss of Purkinje cells. Whereas the hippocampus is not essential for conditioning in the delay procedure, disruption of hippocampal cholinergic neurotransmission impairs acquisition and slows the rate of learning. Alzheimer's disease (AD) profoundly disrupts the hippocampaL cholinergic system, and patients with AD consistently perform poorly in eyeblink conditioning. We hypothesize that disruption of hippocampal cholinergic pathways in AD in addition to age-associated Purkinje cell loss results in severely impaired eyeblink conditioning. The earliest pathology in AD occurs in entorhinal cortical input to hippocampus, and eyeblink conditioning may detect this early disruption before declarative learning and memory circuits become impaired. A case study is presented in which eyeblink conditioning detected impending dementia six years before changes on other screening tests indicated impairment. Because eyeblink conditioning is simple, non-threatening, and non-invasive, it may become a useful addition to test batteries designed to differentiate normal aging from mild cognitive impairment that progresses to AD and AD from other types of dementia.  相似文献   

14.
Classical conditioning has been explained by two main types of theories that postulate different learning mechanisms. Rescorla and Wagner (1972) put forth a theory in which conditioning is based on the ability of the US to drive learning through error correction. Alternatively, Mackintosh (1973) put forth a theory in which the ability of the CS to be associated with the unconditioned stimulus is modulated. We have proposed a reconciliation of these two mechanisms as working in parallel within different neural systems: a cerebellar system for US modulation and a hippocampal system for CS modulation. We developed a computational model of cerebellar function in eyeblink conditioning based on the error correction mechanism of the Rescorla-Wagner rule in which learning-related activity from the cerebellum inhibits the inferior olive, which is the US input pathway to the cerebellum (Gluck et al., 1994). We developed a computational model of the hippocampal region that forms altered representations of conditioned stimuli based on their behavioral outcomes (Gluck & Myers, 1993; Myers et al., 1995). Overall, computational modeling and empirical findings support the idea that, at least in the case of eyeblink conditioning, there may be two different neural systems: the cerebellum which mediates US-based error correction and hippocampus which alters representations of CSs.  相似文献   

15.
Episodic memory, amnesia, and the hippocampal-anterior thalamic axis   总被引:14,自引:0,他引:14  
Aggleton JP  Brown MW 《The Behavioral and brain sciences》1999,22(3):425-44; discussion 444-89
By utilizing new information from both clinical and experimental (lesion, electrophysiological, and gene-activation) studies with animals, the anatomy underlying anterograde amnesia has been reformulated. The distinction between temporal lobe and diencephalic amnesia is of limited value in that a common feature of anterograde amnesia is damage to part of an "extended hippocampal system" comprising the hippocampus, the fornix, the mamillary bodies, and the anterior thalamic nuclei. This view, which can be traced back to Delay and Brion (1969), differs from other recent models in placing critical importance on the efferents from the hippocampus via the fornix to the diencephalon. These are necessary for the encoding and, hence, the effective subsequent recall of episodic memory. An additional feature of this hippocampal-anterior thalamic axis is the presence of projections back from the diencephalon to the temporal cortex and hippocampus that also support episodic memory. In contrast, this hippocampal system is not required for tests of item recognition that primarily tax familiarity judgements. Familiarity judgements reflect an independent process that depends on a distinct system involving the perirhinal cortex of the temporal lobe and the medial dorsal nucleus of the thalamus. In the large majority of amnesic cases both the hippocampal-anterior thalamic and the perirhinal-medial dorsal thalamic systems are compromised, leading to severe deficits in both recall and recognition.  相似文献   

16.
Rabbits received 0 to 450 exposures of a tone conditioned stimulus (CS) prior to classical defensive conditioning of the nicitating membrane response based on an infraorbital eye shock unconditioned stimulus. Tone preexposure resulted in retarded conditioning in normal rabbits. This latent inhibition effect was not present in animals with bilateral dorsal hippocampectomy produced by aspiration. Control animals with bilateral neocortical and callosal aspiration lesions demonstrated a latent inhibition effect similar to that shown by normal nonoperated animals. The failure of CS preexposure to retard conditioning in hippocampal rabbits was not due to differences in threshold of the conditioned response to the CS or to differences in response mechanisms as determined by tests of habituation and dishabituation of the unconditioned response. A subsequent experiment employed combined-cue summation tests to confirm the fact that preexposure did not endow the tone with conditioned as well as latent inhibitiory properties. Finally, tests of stimulus generalization along the auditory frequency dimension indicated flatter relative gradients for hippocampals than for nonoperated controls, with cortical controls in between. These findings were discussed in terms of Douglas' model of hippocampal function.  相似文献   

17.
The present investigation combined a classical conditioning paradigm with a head–shake response (HSR) habituation task in order to evaluate the importance of dorsal hippocampal neural plasticity to spontaneous recovery. In the first experiment animals exhibited rapid HSR habituation (air stimulus to the ear) and an 85% level of spontaneous recovery following a 24 h inter-session interval. The addition of a brief tone prior to the air stimulus produced a similar pattern of habituation during the first session, but the level of spontaneous recovery was reduced (44%) during Session II. In a second experiment dorsal hippocampal lesioned rats placed on this tone/HSR paradigm responded with an 87% level of spontaneous recovery during Session II; while neocortex lesioned control rats indicated significantly reduced levels of spontaneous recovery (55%). In a third experiment bilateral injections of a general MMP inhibitor, FN-439, into the dorsal hippocampus resulted in high levels of spontaneous recovery (81%); while control rats injected with artificial cerebrospinal fluid displayed a significant attenuation of spontaneous recovery (45%). Finally, animals bilaterally injected with a specific MMP-3 inhibitor into the dorsal hippocampus indicated very similar results to those obtained following FN-439 injection. These findings indicate that animals prepared with dorsal hippocampal lesions, or injections with an MMP inhibitor, revealed an impaired association between the tone and air stimulus thus maximum spontaneous recovery was present 24 h later. Thus, it appears that the dorsal hippocampus influences habituation by conserving responses and reducing spontaneous recovery when a temporally contingent signaling cue is present.  相似文献   

18.
The hippocampus is a subcortical structure in the medial temporal lobe involved in cognitive functions such as spatial navigation and reorientation, episodic memory, and associative learning. While much is understood about the role of hippocampal function in learning and memory in adults, less is known about the relations between the hippocampus and the development of these cognitive skills in young children due to the limitations of using standard methods (e.g., MRI) to examine brain structure and function in developing populations. This study used hippocampal‐dependent trace eyeblink conditioning (EBC) as a feasible approach to examine individual differences in hippocampal functioning as they relate to spatial reorientation and episodic memory performance in young children. Three‐ to six‐year‐old children (N = 50) completed tasks that measured EBC, spatial reorientation, and episodic memory, as well as non‐hippocampal‐dependent processing speed abilities. Results revealed that when age was held constant, individual differences in EBC performance were significantly related to individual differences in performance on the spatial reorientation test, but not on the episodic memory or processing speed tests. When the relations between hippocampal‐dependent EBC and different reorientation strategies were explored, it was found that individual differences in hippocampal function predicted the use of geometric information for reorienting in space as opposed to a combined strategy that uses both geometric information and salient visual cues. The utilization of eyeblink conditioning to examine hippocampal function in young populations and its implications for understanding the dissociation between spatial reorientation and episodic memory development are discussed.  相似文献   

19.
Rabbits with the electrolytic lesions of bilateral entorhinal cortex (EC) were trained with the hippocampal-dependent trace conditioning of the nictitating membrane response. The multiple-unit activity of the hippocampal CA1 region was recorded during conditioning. The conditioned stimulus was a tone (1 kHz, 85 dB, 200-ms duration), the unconditioned stimulus was a corneal air puff (3 psi, 150-ms duration), and the interstimulus interval was 750 ms. The EC-lesioned animals showed only 30% conditioned response (CR) by the ninth session while the sham-operated animals showed above 80% CR. The lesioned animals did not show learning-related changes in the hippocampal activity. When the training was switched to the 300-ms interstimulus interval trace conditioning, both groups learned above 80% CR. The EC-lesioned animals, however, showed less learning-related activity in the hippocampus than the sham-operated animals. These results suggest that the development of the learning-related activity in the hippocampus depends on the intact EC, and that the EC may provide a possible pathway conveying learning information from the cerebellum or cerebral cortex to the hippocampus during the trace conditioning.  相似文献   

20.
During the elaboration of an instrumental reflex, it is not obligatory to use a conditioned stimulus, which signals the necessity to generate an instrumental reaction in order to receive reinforcement. However, the presence of a conditioned stimulus simplifies analysis of instrumental reaction, which in this case is the response to the conditioned stimulus. On the other hand, it is necessary to distinguish between instrumental and classical conditioning, since in both cases the response to a conditioned stimulus increases. We studied neuronal analogs of classical and instrumental conditioning in the identified neurons responsible for the defensive closure of the pneumostome in the Helix mollusk under the same conditions. During classical conditioning, a mollusk received punishment after a tactile stimulus. During instrumental conditioning, a mollusk received punishment when an identified neuron did not generate an action potential in response to a tactile stimulus. The appearance of a painful stimulus did not depend on the generation or failure of a spike in the related control neuron. Another tactile stimulus, which was never paired with an unconditioned stimulus, was used as a discriminated stimulus. We also compared the behavior of such identified neurons during pseudoconditioning. The experiments were carried out in a semi-intact preparation. We examined how responses to the tactile and painful stimuli changed during different forms of training. It was shown that the dynamics of neuronal responses to a conditioned tactile stimulus were much more complex during instrumental conditioning and consisted of several phases. Throughout a learning session, neural system consecutively acquired information as to which kind of learning was presented, whether a reaction of the neural system must be generated or inhibited and which instrumental reaction is correct. We have demonstrated that response to a painful stimulus during classical conditioning decreases after short-term initial increase. However, during instrumental learning, the neurons controlling instrumental action remained highly sensitive to the unconditioned stimulus. Meanwhile, foreign neurons decreased their responses to the unconditioned stimulus. We may tentatively conclude that classical and instrumental paradigms are fundamentally different at the cellular level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号